
ROBOT WORLD SIMULATOR FOR JAVA

By

Rogers Bhalalusesa

A dissertation submitted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science of the University of Kent

University Of Kent, Uk

September, 2009

 ii

DECLARATION

AND

COPYRIGHT

I, Rogers Bhalalusesa, declare that this dissertation is my own original work and that it

has not been presented and will not be presented to any other university for a similar or

any other degree award.

Signature ………………………………….

This dissertation is copyright material protected under the Berne Convention, the

copyright Act of 1999 and other International and national enactment, in that behalf, on

intellectual property. It may not be reproduced by any means, in full or in part, except

for short extracts in fair dealing, for research or private study, critical scholarly review

or discourse with an acknowledgement, without permission of the Directorate of

Postgraduate Studies on behalf of both the author and University of Kent.

 iii

Acknowledgements

It is a pleasure to thank those who made this project successful First and foremost I would

like to take this opportunity to thank my supervisor, Dr Peter Kenny for all his guidance and

for support he has given me throughout the project

Secondly I would like to thank my brother, Moses Bhalalusesa who has been living with me

throughout the time that I have been busy working on this project.

Additionally I would like to thank all those who participated in the evaluation of the projects

for their useful ideas which have contributed so much to the project.

Last but not least I would like to thank my parents for being able to sponsor me throughout

the pursue of my master‟s degree. There is a lot that they have sacrificed for me to get me to

where I am, and for this I will always be proud to have them as my parents

 iv

 Abstract

Teaching Introduction to Object Oriented Programming and Java by Visualization is widely

being adopted by many institutions. Regardless of the nature of the introduction technique

used in java, at later stages, the students will have to develop programs by using editors

where they will have to manually write codes. The transition from using Java by

visualization to that by directly coding is hard. The jump is so big that when the students

have learned Java by visualization they still find it hard to write java code for their own

programs. Thus a Mid-point is vital to help the students as they move from Java by

visualization to Java Coding.

This project introduces a code writer to the java visualization teaching tool known as Robot

World Simulator. The code writer will help novice programmers to transition from the

learning Java through visualization to java code writing gradually. The Code writer is an

interface where students can write Java codes to control the movements of the Robot in the

Robot World Simulator and visualize the effects of the code they write without waiting for

the program to compile. Students start learning OO concept through visualization and

practise code writing by controlling the objects using both code writing and visualization

controls before they switch to writing codes completely. The code writer will not only

provide assistance when the novice programmers venture into poor programming and make

errors but also it will be used side to side with the visualization controls and in that way it

will make it possible for the student to transition gradually from visualization to code

writing.

 v

The work describes the background of the problem of transition from visualization to code

writing, before giving an insight on how the development of the Robot World Simulator

with code writer was achieved and shows how the code writer can help in transitioning the

students from programming by visualization to programming by coding.

 vi

Table of Contents.
 Page

List of Tables

1. Introduction

 1.1. Background to the Problem

 1.2. Problem Statement

 1.3 Solution Domain

2. Literature Review

 2.1 Intergating Interaction to Visualization and Coding

 2.2 Visualization Tools

 2.2.1. Karel the Robot

 2.2.2. Blue J

 2.2.3. GreenFoot

 2.2.4. Alice 2

 2.2.5. Dr Java

 2.2.6. Jeliot 3

 2.2.7. Previous Work on RobotWorld Simulator

 2.3 Summary

3. System Development

 3.1 User requirements

 3.2. Non Functional Requirements

 3.3 Overall Design Analysis

 3.3.2. System Overview

 vii

 3.3.3. Design Considerations

 3.3.4. Development Planning

 3.4. First Iteration

 3.4.1. Aim

 3.4.2. Functional Requirements

 3.4.3. Detailed Design Analysis

 3.4.4. Implementation

 3.4.5. Testing

 3.4.6. Revision Analysis

 3.5 Second Iteration

 3.5.1. Aim

 3.5.2. Functional Requirements

 3.5.3. Detailed Design Analysis

 3.5.4. Implementation

 3.5.5. Testing

 3.5.6. Revision Analysis

4. Evaluation

 4.1 The Evaluation Strategy

 4.2. Feedback from Evaluators

 4.2.1. Using Code Writer

 4.2.2. Text Viewer

 4.2.3. 3D Visualization

 4.2.4. Language

 4.3 Future Improvements for RobotWorld Simulator

 viii

 4.4 Evaluation Summary

5 Conclusion

6 Bibliography

 ix

List of Tables

 Page

Table 3.1 Robot World simulator User Requirements

Table 3.2 Robot World simulator Non Functional Requirements

Table 3.3.1 Robot World Simulator features

Table 3.3.2 Componsons of features of the new RobotWorld Simulator to the

Old RobotWorld Simulator

Table 3.4.2 Iteration 1 Functional Requirements

Table 3.4.6 List of Iteration 1 Bugs

Table 3.5.2 Iteration 2 Functional Requirements

Table 3.5.6: List of Iteration 2 Bugs

 1

1. Introduction.

1.1. Background to the Problem.

Teaching programming is still a big problem in the Education of computer science students.

Novice programmers tend to perform poorly in this field of programming. Kaasboll reports

that drop-out or failure rates vary from 25 to 80 % world-wide [1]. Most educational

institutions introduce students to the concepts of Programming using Object Orientation

(OO) approach in Java [2]. Even with the simplicity of Object orientation programming the

novice programmers still face the problem of developing to competent programmers.

This can be looked at from the point of view of how the novice programmers are introduced

to the concepts of programming. When the novice programmers first start to learn how to

program they are faced with a number of difficulties. The students not only have to learn

how the Object Orientation is achieved in real word but also they have to learn how to apply

it using the Java programming language which has its own syntax that is new to them.

A lot is still being done to help teach students programming language in order to address this

problem. Of many approaches that have been taken, Visualization has so far been successful

in trying to introduce novice programmers to understand the concepts of programming [3].

However the power of visualization teaching tools limits the students‟ ability to manipulate

systems through visualization controls buttons and through input parameters. This does not

allow students to develop programs of their own completely in visualization. Therefore in

order to create their own programs the students turn to using text editors that can be

 2

provided by some of these visualization tools and complex Java Integrated Development

Environment (IDE) systems that have many advanced features that may overwhelm students

with no programming background [4]. The novice programmers hence find it hard to start

using the text editors to write java programs after they have learned the concepts of OO

through visualization.

1.2. Problem Statement

In view of the facts above the main problem can be summed up in one sentence as

“Migration from using visualization controls in the Visualization tools to writing complete

java programs in text editors and java IDE’s in order to create programs is a big transition

for novice programmers”. This transition is so big such that most students tend to fails to

write programs in the IDE’s after they have clearly understood the OO concepts using

Visualization.

Robot World Simulator is a tool that uses visualization to introduce Novice programmers to

the concepts of OO programming [5]. It has been developed for almost over ten years now at

the University of Kent and each one is an enhancement of the previous one. But like many

of the java visualization tools it still leaves a big gap when a student wants to migrate from

learning by visualization to the actual coding.

1.3. Solution Domain

The solution to the swift transition of programming by visualization to code writing will be

based on the principles of interaction between the students and visualization teaching tool.

 3

In order to reduce the gap from Visualization to coding, a midpoint should be established

that allows students to interact with the systems by starting to write simple java statements

slowly and while at the same time continue to interact with the visualization using

visualization control buttons. On top of that the visualization teaching tool should provide

multiple views in order to make the student associate the java codes they write with other

things they are familiar of like normal English language and Visualization.

Therefore the aim of this project is to develop a Robot World Simulator tool that has all the

necessary features of a good visualization teaching tool to help transition the students from

learning OO programming by visualization to writing their own codes.

 4

2. Literature Review

2.1. Intergating Interaction to Visualization and Coding

When the students first learn to program by visualization they are allowed to interact with

the visualization tools through visualization control. This way it becomes easier for them to

understand the concepts [3]. But when they switch to code writing the interaction ceases and

they have to write codes without direct interact with visualizations. They only get to see the

visualization after they have finished completely. This way they fail to find out where they

have gone wrong and in turn they fail to progress.

In view of Naps et al the overview of best practices that can be used to help in addressing

the pedagogical problem of programming can be drawn from increasing the interaction to

visualization [6]. Interaction can be increased by including performance information and

execution history. This way the students can relate the visualization with the execution

history and gain a deeper understanding of the codes that have resulted to a particular

visualization change. This doesn’t happen in visualization tools as the students use separate

text editor away from visualization when writing codes.

Additionally, According to Doherty most students write codes that is syntactically and

semantically erratic [7]. The students tend to use feedback from compile in order to revise

their code. The feedback may take a while for some IDE’s and even when the feedback is

provided it is not structured in a way to help novice programmers. But if interaction level is

high then a formative feedback for normal execution, errors or anomalies will be provided

 5

right away. So if we combine both the visualization, code writing and visualization control

and allow feedback quickly the users will learn to associate all the contents and practice

code writing easier. That way the students can transition slowly from visualization to code

writing.

2.2. Visualization Tools

In order to develop a system that can narrow down the jump between the using Visualization

to code writing it is better to look at the visualization tools and see how they have tried to

incorporate writing java codes.

2.2.1. Karel the Robot

This is one of the earliest works that teaches skills of programming and important

programming aspects by visualization.[8] The interface is made up of a Robot World that

contains a robot called Karel which is positioned at crossing points of vertical and horizontal

lines of the Robot World and can move around barriers and manipulate beepers.

The Robot World is composed of Street (vertical) and avenue (horizontal). The Robot World

is illustrated using a flat plane of north, east, south and west directions but bounded only by

the west and south walls. Some basic functionalities of Karel the robot include moving

forward in the direction he is facing, turning left, picking up a beeper, putting down a

beeper, and carrying some beepers in his "bag". Also he can find out the presence of nearby

walls, can determine if there are any beepers in his bag or if he can pick up a beeper. The

system allowed students to write programs that make Karel perform tasks. It has made a

 6

blue print for many of the visualization tools that have been developed including the series

of Robot World simulators.

The simulator has an advantage of allowing students to visualize the programs they have

written. But in this context of helping the students to write their own codes it is not very

useful as the students write codes separate and view the effects of the code they have written

later on.

2.2.2. Blue J

Blue J is a Java IDE that has been developed mainly to introduce students to the OO

programming using Java [9]. It allows the visualization of the class structure of the system

in UML representation and shows how those classes are related. It allows users to interact

directly with the classes by creating objects, setting attributes and calling other methods and

see the results of that interaction without writing java statements. Then after it allows

students to use Blue J text editor to modify Java codes of the existing classes of the project.

Blue J decreases the gap between the visualization and code writing by allowing students to

input a limited set of java codes and modify classes that have already been created through

visualization interactions.

On the other hand Blue J still lacks the ability of having multiple view of the simulation

occurring at the same time (Chapter 2.1). The text editor opens up as a new window and the

changes made are seen later after the user saves the editor and compiles the classes. On top

 7

of that Blue J visualisation are only in UML and don’t represent visualization as how objects

interact.

2.2.3. GreenFoot

Greenfoot is an interactive object world, that aims at motivating students by providing

concrete experience with object concepts through interaction and visualisation, using

engaging context scenarios, while conveying important object-oriented programming

abstractions in the standard Java programming language. [2] It is an educational tool that

assists in understanding fundamental object-oriented concepts, and it is highly motivational

through instant graphical feedback.

Greenfoot can be used with many different user scenarios, from different topic areas in order

to keep the students entertained for example Ants, Karel the robot and lift simulation. As a

result of this Greenfoot allows custom environments to be created to specific target groups

of novice programmers in order to serve special interest areas. [3]

Greenfoot serves as a good teaching tool to introduce and develop novice programmers to

OO programming because it first allows the interaction and visualization of the objects to

the users and then makes it possible for user to edit the classes already present. This hides

the complexities to the novice programmers for they focus on only writing java codes to edit

classes and extends subclasses without worrying about writing the classes from scratch. The

green foot text editors also have abilities to check the syntax of the java codes the user

inputs which in a way help the novice programmers.

 8

From another angle we can see that the text editor of GreenFoot is loaded externally and

code written has to be compiled before being run. Thus, the IDE brings immediate

interaction and feedback only when visualization is used but when the users start to write

their own code the interactions and feedback is reduced to minimum.

2.2.4. Alice 2

Alice 2 is the most stable of Alice packages at present. It is 3D graphical and interactive

micro world programming environment created and distributed by Carnegie Mellon

University which has recently gained attention as a gentle introduction to object-oriented

programming. [10]. Students use a syntax-free direct-manipulation editor for instantiating

objects of 3D animation with simple event handling mechanism. Alice uses a story telling

approach and has a number of scenes to allow variation of exercises to the students where by

a student’s create a story and follow it through as they learn the OO programming concepts.

Alice 2 has very good graphical presentations of the Object Oriented systems. Students can

see and manipulate objects directly in the editor using instructions that correspond to java

statements without going through compiling complexities like other Java IDE’s text editors.

In that way a way it is a good teaching tool to introduce students to Object Oriented

Concepts.

However Alice has only drag and drop interface does not provide students with much useful

experience with syntax as it is syntax free. Hence the students cannot learn how to input java

 9

codes in the text editors. One thing to note though is that the new version of Alice (Alice 3)

which is currently not stable will have the feature to allow students to enter java codes and

evaluate the syntax.

2.2.5. Dr Java

Dr Java shares the goal of providing a pedagogic environment that minimizes the

intimidation factor experienced by new students [11]. It is a text based interface that is

simple, interactive, and with a focus on the language. It is composed of an interactions pane,

a "read-eval-printloop" (REPL) that evaluate Java expressions and statements interactively.

Users type java statements and having it evaluated immediately, without having to write a

full Java program. The editor supports multiple documents but does not organize files into

projects.

Dr Java has a cleaner and simpler interface that maintains a focus on the Java language. It

hides away the complexities of the writing the whole program and provide assistance to

students when necessary.

At the same time, the interface is only text based and so it doesn’t address the problem of

understanding object orientation by visualization like Alice and GreenFoot.

 10

2.2.6. Jeliot 3

Jeliot 3 is a java teaching tool that uses visualization to aid novice students to learn

procedural and object oriented programming. The key feature of Jeliot is the fully or

semi-automatic visualization of the data and control flows [12]. The latest version of Jeliot 3

has visualization better suited for novice programmers in that it allows a dynamic

visualization of objects.

This teaching tool allows the users to interact with the objects through the visualization

editors and once the users are confident enough they can start writing their own programs

codes in Mini language a called „Not Quite C‟ (NQC).

The good thing about this teaching tool is that it is easy to use and allows students to learn

by doing. Together with that its visual display of the program can be used to facilitate

communications about the errors.

Unfortunately Jeliot 3 uses Mini-languages when students enter their own codes to

manipulate the objects. This is a drawback because later the students will have to learn

afresh the java syntax

2.2.7. Previous Work on RobotWorld Simulator

Since 1999 a number of versions of the Robot World have been built over the years to be

used for introducing novice programmers to concepts of programming. Each version has

been built in light of the previous versions to improve the capability of the Robot World. .

 11

Since the new system will adopt the functionalities of those systems it is then a good idea to

identify their key additional features to the Robot World system.

2.2.7.1 Cannon (1999)

This is the earliest version of the Robot World. His work created in Java AWT followed

much on the program of Karel the Robot. It presented well the pedagogical problem of

Object Orientation to novice programming and showed how Robot World would help in

teaching these concepts [5].

It had the simplest and the most basic functionalities like that of Karel (Chapter 2.2.1). For

the program which was created a decade ago, it seemed right for its time. But presently a

number of setbacks it has including the limitation of movements of robot to move only

forward and only turn right makes its graphical user interface outdated compared to other

later versions. And as well it had only an interface where students could input parameters

but not construct java statements to control the objects of the Robot World simulator.

2.2.7.2 Chaundry (2000).

Chaundry extended Cannock (1999) work by bridging it to the Web browser [13]. His work

also improved the tutorials governing the usage of the Robot World Simulator. The

graphical user interface was still the same as that of Cannock. The project emphasis was

given to Students learning of Java concepts through tutorials of the Robot World. Since the

simulator feature was still the same as that of Cannock then it had the same problem of

lacking an interface where students could input java codes.

 12

2.2.7.3 Sally Webber (2001).

This was a much neater work in terms of pedagogical view of programming language as it

introduced games feature where the user had to provide some form of coded solution in

order to achieve the game’s objective [14]. There was HTML tutorial base that student could

use to learn java control structure and apply it in the Program interface in the Blue J in order

to control the robots. This showed some signs of users starting to write their own codes in

the Robot World of which is now the main purpose of this current project.

However the graphical user interface did not change compared to the past projects. It still

contained less features and couldn’t handle the exceptions well. And still at this stage there

was no interface where students could input complete java statements.

2.2.7.4 Adam Fisher (2003)

This work revolved around the visualization of the Graphical user interface and improving

the state of information of the components of the simulation [15]. Feedback given to users

was increased in that users could easily differentiate when a robot is carrying a cone and

when it is not. It also provided diagnostic execution capabilities that gave some feedback to

programmers when steps to be retraced in the program are needed.

It brought one strong feature of helping the students practice the concepts of OO. This

feature is the algorithm for a robot to find the best path from one location to another.

Nevertheless the system was still in adequate because most of these practice were done

 13

interactively using controls an input parameters and in turn the students didn’t practice much

writing true java statements.

2.2.7.5 Undergraduate (2004/2005) Project

This project introduced a new GUI in Java 2D [16]. The project made a substantial

visualization change to the interface and created a new tutorial which combined HTML

pages with user-editable classes within Blue J. It also provides Test facilitation of tutorial

exercises and feedback to the task performed by the users as in whether they have passed the

exercise or not.

This was the first major change to the Robot World as it introduced a completely new look

of Robot World simulator. Generally the program was good for introducing students to OO

by visualization but like many of it predecessors it didn’t include features to allow students

to enter ‘complete’ java statements.

2.2.7.6 Wang (2005)

The project aimed at improving the efficiency of teaching Java [17]. It allowed teachers

creating their own set of tutorials for student and allowed students to write java codes in the

tutorials to control the robot. The GUI looked like that of the Undergraduate (2004) project

with a few added functionalities.

Just like its predecessor the program also was highly dwelt on the visualization techniques

as it didn’t include interface for students to write their own codes.

 14

2.2.7.7 Penna (2007)

This work introduced a code builder where students could practice the control structures of

programming using a form that allowed them to enter parameters to control he simulation

[18]. This is a step towards code writing except it doesn’t fulfil entirely the concepts of code

writer as it doesn’t allow users to write java codes. This work also tried to remake the user

interface to be more attractive and provided more functionality like the status bar which

showed the sell selected at any point in time and deactivated the navigation panel whenever

a robot is not selected.

The program made the visualization concepts to be easily understood by the students. The

code builder helps the students to understand in depth parameters of methods and variables

and explained well the structures of conditional and loop blocks. However the program

limited the users to enter only parameters to control the simulation and the students couldn’t

writer complete java statements.

2.2.7.8 Undergraduate (2007/2008) Project

This work brought about the 3D visualization to the Robot World. It had clear presentation

of the objects on the Robot World [19]. Its guide to using the Robot World was well written

and easy to use. The tutorial covered a lot of things and took users step by step.

This work had a major advantage in introducing the 3D graphics to make the diagrams

attractive and make students pay close attention to the learning as it is interesting to use 3D.

 15

But at the same time, it didn’t do much in terms of allowing user to write their own java

codes as it only allows them to control the simulation by using the visualization control.

2.2.7.9 Undergraduate (2008/2009) Project

This is the latest work to be done on the Robot World. It has a 3D visualization and a special

interface called Code writer where students can write codes to control the object on the

simulation [20]. The students can choose to control the simulation by using either the control

buttons or the Code writer. It can also run using Both Blue J and Net Beans.

This is the breakthrough for students to write their own codes. However it is still in adequate

because the students make a jump from using visualization control buttons straight to

writing java codes just like in Blue J. This transition could still be narrowed down to make

sure that the students get a chance to use both the visualization controls and the code writer

at the same time.

2.3. Summary

Most of the above Visualization tools have included interfaces to allow user to enter text

inputs to control the simulation. They have different levels of entering text to manage the

visualization. This has ranged from no text interface at all as in Alice, to simple interface

where students input only parameters as in Penna’s Robot World Simulator with, and finally

more complex editors like GreenFoot where students can modify completely even the

classes that define the visualizations [3, 10, and 18].

 16

The interface like that of Penna’s Robot World does not expose the students to much of the

code writing. They do not give students room to write complete java syntax codes but rather

guide them not to make mistakes. Entering parameters is a step towards code writing as it

increases interaction to students but still it is not enough to make the students move from

visualization to code writing.

At the same time Interfaces like Blue J and GreenFoot must have a new text editor opened to

let users to start inputting java codes. This is then not interactive straight away as the users

have to edit the java codes and save them before they see the effects of the codes they have

written.

Dr Java visualizes the code while Blue J visualizes the static classes, but to some extent they

all improve interaction to students learning programming languages. According to Olam et

al, the great strength of Dr Java and Blue J which helps to bridge the gap of jump of

visualization to java coding allows beginners to write simple statements and get immediate

feedback. [11].

Of the previous Robot World Simulator systems developed so far, The Robot World

Simulator of Undergraduate of 2008/2009 has made it possible to input real java codes and

observe the visualization effects there. But although it allows java codes to interact with the

visualization directly it still has a steep learning curve, because the users can not get the

interaction of both the visualization control and code writer at the same time.

 17

The same can be said about DR Java. It allow the user to input basic Java expressions such

as 1+1 while at the same time seeing the visualization effects happening which increase the

interaction .[12]. The only difference is the type of visualization observed. Dr Java has an

advantage of having only simple java codes compared to the code writer. This is far better

than Jeliot 3, which visualizes text input from users that are not complete java statements or

expression at all as they use mini languages [13].

To transition the novice programmers from visualization to code writing involves gradual

development. For most of the visualization tools above, if there is a transition to code

writing, the jump is usually high. What is needed from this new Robot World system is to

have the transition narrowed down so that the user can gradually move step by step from

visualization to code writing. They have to be writing complete java statements and

visualize them as in The Robot World of Undergraduate of 2008/2009, or blue J and

GreenFoot but the codes should be simple as in Jeliot 3 and Dr Java.

 18

3. System Development.

3.1. User requirements

A series of high level user requirements is listed on table to in order to reach the solution

suggested in the chapter 1.3.

Reference

Number

User Requirement

UR1.

The system should teach a novice programmer the concepts of

objects Orientation using Visualization in 3D.

UR2.

The system should allow the user to see java codes , visualization

and human language and the information about the visualization

concurrently

UR3.

The system should allow users to control the visualization using the

visualization Control button and by writing codes.

UR4.

The system allows users to use two different kinds of Code writers

to write the codes. One which will be used with the visualization and

the other which will be used alone

UR5.

The system should help users not to run into errors and poor

programming styles

UR6.

The system should allow users to learn OO concepts using the

tutorials.

Table 3.1 Robot World simulator User Requirements

 19

3.2. Non Functional Requirements

Like any other system the efficiency and effectiveness of the Robot World system will rely

on key non functional requirements. These are tabulated on the following table

Reference
Number

Non Functional Requirement

NFR1.

The system must be able to run on Windows and Linux Operating
Systems

NFR2.

The system should be able to run in Java 3D.

NFR3.

The system must never crash or fail throughout the simulation

NFR4.

The system has to be easy to maintain

NFR5.

The system must allow future improvement to be made possible.

NFR6.

The simulator which is easy to use and easy to understand.

Table 3.2 Robot World simulator Non Functional Requirements

3.3. Overall Design Analysis

3.3.1.1 Feature Analysis

In order to satisfy the requirements as stated in table 3.1, the Robot World simulator system

to be developed must have at least the following features.

 20

 21

3.3.1.2 Visualization Grid

This is to be the place where users see all the objects and actions that take place. The

visualization is in 3D graphics. The grid is composed of 6X6 square matrix cells that can

contain objects. The objects are cone, robot and barrier.

3.3.1.3 Visualization Control buttons

These are to be buttons that manage the objects of visualization. The actions which can be

performed are to create the three objects, Move the robot around to manipulate the cones

and clearing the contents of the visualization grid.

3.3.1.4 Interactive Code Writer

The interactive code Writer handles the Java codes of the Robot World simulator. It allows

the input and output of the java codes to control the visualization. It is used side by side with

visualization control buttons.

3.3.1.5 Programmed Code Writer

The programmed Code writer exists on its own without the visualization control buttons.

This type of code writer allows many more types of statements to be written including

conditional statements and while loop.

3.3.1.6 Status Bar

The status bar displays the active cell selected. Together with that it also displays from time

to time some necessary information for example when the user loads a tutorial.

 22

3.3.1.7 Text Viewer

The text viewer outputs the pseudo codes. The pseudo codes are similar to English phrases

so that they can easily be understood by users in case they still haven’t grasped the java

syntax. The text viewer displays the pseudo codes whenever the action occurs on the Robot

World simulator.

3.3.1.8 Tutorials

The tutorials are web pages create din HTML that teach the users about the OO

programming in Java.

Table 3.3.1 summarizes the system features above that will serve the user requirements

Reference

Number

User

Requirement

System Feature

F1. UR2 Overall Robot World Graphical User

Interface(GUI)

F2. UR1,2,3,4 Visualization Grid

F3.

UR2,3 Visualization Control Buttons

F4.

UR2,3,4 Interactive Code Writer

F5.

UR2,4 Programmed Code Writer

F6.

UR2 Text viewer

F7.

UR2 Status Bar

F8.

UR5 Syntax Parser

F9.

UR6 Tutorial

Table 3.3.1 Robot World Simulator features

 23

From chapter 1.3 the basic idea behind is to make sure that the novice programmers

gradually migrate from Visualization to Code writing. The first to do is to allow the Robot

World to display as many features as possible so that the users can associate perspectives of

the simulation.

To allow this the Robot World will have in one window all the necessary features present t

make users‟ associate visualizations, java codes and English words. Therefore when the

users first loads the Robot World simulator, it will be better if they see the visualization grid,

visualization controls buttons interactive code writer and text viewer all together To allow

the move of code writer to be swift it will be made possible to have another version of the

same Robot World simulator which will not have the control buttons so that the user can

only control the objects by input the codes. This way the user will first start of by using both

the control buttons and java codes to control the simulation before he goes on to use only

java code writing to control the simulation.

The code writers will have the ability to check for syntax errors and poor programming

styles of the code the users enter before they are executed. One thing to bear in mind is when

best to give users useful feedback when they run into errors. The feedback on the errors will

be given momentarily on the same window and the execution stopped and waits for the user

to correct the errors before continuing as suggested in chapter 2.1. Once the user has got the

statement in correct java syntax then the code will be executed. The programmed code

writer is to able to copy the contents from interactive code writer so as to help the user have

a starting point when he wants to use only java codes without control buttons.

 24

In addition to that it will be possible for the contents of both the code writers and the text

viewer to be saved for future references.

The Robot World simulator will also contain tutorials to teach students the OO orientation.

The users will be able to open the tutorial from the Robot World simulator in a web browser.

The users will open the tutorial in a web browser and read through even when they have not

opened the Robot World simulator.

With this in mind there will then be a menu item that allows users to move from Robot

World simulator with Interactive code writer and another item of Robot World simulator

with programmable code writer. In addition to that there will also be a menu item to allow

users to open up tutorials for OO programming.

3.3.3. Design Considerations

From chapter 1.3 the Robot World will include the best of the previous Robot World

systems as well as incorporate features of a good visualization tool that helps the user to

transition gradually from visualization to coding. There are two available approaches to

implement the system. One is to develop everything from scratch and the other is to use one

of the previous Robot World simulator systems and change some features in order to get the

system that works in a preferred way. For each one of them there is a high risk that is

associated with choosing it.

If the approach of developing a system from scratch is taken, there will then be a total

control of whole system development. There will be new design of the system and code

 25

writing of all the associated features. However it might take a long time to design the whole

system and implement it from scratch and there is a high risk that it might not be finished in

time.

On the other hand if one of the previous systems is reused then it will be easier because most

of the basic functionalities of Robot World simulator system needed, will already have been

implemented and all that will be left will be designing and implementing those parts that

weren’t there in the first place. But again, with this approach, time will have to be spent to

understand the source code of the system and there is a risk that I might not fully understand

how it works and might get stuck at some points. Since there is a tight time schedule then it

is better to reuse the code that has already basic functionalities and change it to fit to the

requirements identified in chapter 3.1.

The new Robot World simulator will reuse the Robot World simulator system by the

undergraduate of 2008/2009. This has been chosen because first and foremost it is the latest

version of the Robot World simulator. And since the Robot World simulators have been

built on top of the previous ones it will have contained most if not all the features that were

in previous versions as well. As well the 2008/2009 undergraduate project will be a good

starting point because it already has a code writer designed and can visualize object in 3D.

Thus less work will be done in just implementing the code writer in the way this project

wants the code writer to be used.

As many of the basic features that the Robot World simulator is going to posses have

already been implemented by the Undergraduate project then it is a good point to find out

 26

how the features of the new Robot World compare to the previous one. Table 3.3.2

compares the features of the new Robot World simulator against those of the system of

undergraduate project 2008/2009.

Feature Undergraduate Project

2008/2009

New Robot World

Simulator

Reason

F1 Switch between the

Code Writer , control

buttons and the location

finder

Both displayed at the same

time

Make the user see the

code writer and

Control buttons and

choose the one to use

 Contains the location

finder as a menu item

Location finder replaced

by the Status Bar

No need for a separate

location finder menu

as the status bar will

be there

 Has no Status Bar Has a Status Bar Displays constantly

the location of the

selected cell

 Pop up when anomalies

appear during robot

movement

Provide pop ups and

animations when

anomalies appear during

robot movement

Addition of animation

to keep the user

entertained

 The buttons and the

code writer control

User able to control the

same object using buttons

User can start using

the control at one time

 27

object at different times and code writer

interchangeably

and switch to code

writing on the same

object

F4 No Interactive Code

Writer

Has Interactive Code

Writer

Code writer is seen

from start when the

Simulation is opened

up

 Displays Java Codes

output when students use

Visualization control

buttons

To allow the students

to make relationship

between java codes,

human language and

visualization

F5 Code Writer has a

simple checker

Code Writer has a

complex syntax checker

To allow the system to

pick up errors and

suggest solutions

 Can load contents from

the Interactive Code

Writer

To give users a

starting point

F6 Output Java Statements Output Pseudo codes Close to human

language and code

writer already has Java

statements

F7 Output Information Displays the active cells Always know where

 28

the student is in the

visualizations

F8 Scans user inputs and

alerts the user when he

has made an error

Alerts the user where an

error is made and provide

assistance

Picks up errors and

suggests corrections

Table 3.3.2: Comparisons of features of the new Robot World simulator to the old Robot

World Simulator

3.3.4. Development Planning

The methodology that will be followed in this project will be the Iterative development

model. At first it was proposed to use Waterfall development model as it allows the system

to be developed within a short time but after a literature review and preliminary analysis of

the system it was decided that Iteration would better suit the development process.

It is appropriate to use Iterative approach in the Robot World simulator because it allows the

systems to be developed in a number of steps with each end product representing a working

system that can satisfy a subset of the basic requirements.

This will address the question of time limit. The time to develop the system is short and

therefore by having to develop the system in a number of iterations it will make it possible

to have some few full working features by the deadline.

 29

The user requirements will be extended to detailed functional requirements. The mandatory

and significant functional requirements will be implemented first and the minor

requirements will be implemented later. There is a chance that some functional requirements

won’t be implemented due to time limit and some will evolve as development goes on.

The code writer will have to be implemented first as it is the significant focus of the project.

This will be followed by the syntax checker and tutorial. Lastly we will end up with the

Animations as it is a minor requirement.

Both Java Netbeans and Eclipse provide good IDE’s for implementing systems that require

good Graphical user interface. Since the system will reuse the previous codes then it will be

convenient to implement it using the Netbeans as it is the Java IDE that was previously used

to develop the existing system.

The system development will therefore have two Iterations. The first Iteration will consist of

creating the Graphical User Interface for the system and the Second Iteration will be dealing

with Syntax parser Tutorial and animation of the Robot World simulator.

3.4. First Iteration

3.4.1. Aim

The first Iteration focuses on embedding the code writers to the Graphical user interface

(GUI) of the Robot World Simulator system and make sure that it can allow user to control

 30

the visualization by both visualization control buttons and the code writers. It is assumed

that the codes entered by the users at this point contain no errors.

3.4.2. Functional Requirements

Table 3.4.2 lists the functional requirements to make sure the code writer is embedded and

works without problems

Reference

Number

User

Requirement

Functional Requirement

FR1 UR1 Allow users to see all the features of the Robot World

(3dVisualization Panel, Code writer, control buttons,

status bar and text viewer) at the same window all the

time

FR2 UR3 Allow the user to navigate through code writer and

Control buttons to control the input of the Robot World

FR3 UR2 The user can visualize on the Robot World the effects of

the input actions put in the control button and code

writer

FR4 UR3 Allow the users to manage the robot objects in Robot

World by clicking on the Control buttons

FR4.1 UR3 Create robot, cones and barriers

FR4.2 UR3 Move the robot forward if there is no barrier in front

FR4.3 UR3 Move the robot backward if there is no barrier behind

 31

FR4.4 UR3 Turn the robot left

FR4.5 UR3 Turn the robot right

FR4.6 UR3 Pick up a cone

FR4.7 UR3 Drop a cone

FR4.8 UR3 Fail to move the robot in the cell where there is a barrier

FR4.9 UR3 Delete robot, cone and barrier from the Robot World

FR5 UR3 Allow the user to manage the robot objects in Robot

World by writing codes in the code writer

FR5.1 UR3 Create robot, cones and barriers

FR5.2 UR3 Move the robot forward if there is no barrier in front

FR5.3 UR3 Move the robot backward if there is no barrier behind

FR5.4 UR3 Turn the robot left

FR5.5 UR3 Turn the robot right

FR5.6 UR3 Pick up a cone

FR5.7 UR3 Drop a cone

FR5.8 UR3 Fail to move the robot in the cell where there is a barrier

FR5.9 UR3 Delete robot, cone and barrier from the Robot World

FR6 UR3 Allow the user to control objects of the Simulation by

using control buttons and code writer simultaneously

FR7 UR2 Allow the user to see the input actions from control

buttons in the Code Writer as java codes

FR8 UR2 Allow the user to see pseudo codes of the input of code

 32

writer in the Text viewer

FR9 UR2 Allow the user to constantly see the location of the

selected cell in the status bar

FR10 UR4 Allow the user to switch between the Code writers

using the Menu bar

Table 3.4.2 Iteration 1 Functional Requirements

3.4.3. Detailed Design Analysis

The GUI will be divided in two halves, input and output parts. The left half will contain the

input and right half will contain the output. For the input half, since the students begin to

use the system by the visualization control button then this will be displayed at the top most

left half and the lower half will contain the code writer.

On output part the visualization grid will be displayed on top most. Below the Robot World

there will be controls for speed of the execution followed by the status bar which will

display the active cell. The last component of the output half will be the code window that

will display. The visualization grid will be larger than other output code window because it

has to visually display what the user has typed. Here is the diagram that shows how the GUI

interface of the system will look like.

 33

Fig 3.4.3.1 Robot World Simulator with Interactive code writer.

The system will have an option of choosing an interface where the students will enter codes

alone to control the robot and therefore the control buttons won’t be needed. In this part of

the code writer the users can write as many lines of code to manage the objects as they want.

Since there will be only one input source it will be okay for the code writer to fill the whole

input area. The output part won’t change and will still consist of the Visualization Panel,

Status bar and the Text viewer. Here is the sketch of the Interface.

 34

Fig 3.4.3.2 Robot World Simulator with Interactive code writer.

The text viewer will output pseudo codes similar to English language in order for users to

understand what is going on. Each time a user does something on the simulation messages

will be displayed here on the viewer one line at a time to show which line event has

occurred.

The status bar will keep track of the active cell. This will be embedded below the Robot

World visualization panel and updated each time an event occurs in the Robot World.

Appendix C shows the class diagram of how these features will be embedded to produce the

desired GUI.

 35

3.4.4. Implementation

Java Swing in Netbeans will be used to implement the desired GUI. Since the development

of the new Robot World simulator will be based on the previous version some of the

features will be remain the same. Looking back at the feature summary table 3.3.2, no

changes will be implemented to Visualization 3D and the Visualization Control buttons.

However the Interactive Code Writer, Programmed Code writer Text viewer and the Status

Bar will change to suit the new Robot World simulator.

Messages to be output by the status bar and the text viewer were passed as a string and the

active cell to be displayed was passed as coordinate argument.

The list panel was used to output text in text viewer that has the capability of making the

most recent statement has to be highlighted and become different compared to others.

Among the major concern was to how to implement the interactive and programmed at the

using only one type of code writer. One object was created and given key listeners and sizes

that were different. The interactive code writer has a small size and was given an Enter key

listener and the programmed code writer was given large size without key listener. These

would change every time the user switches to different type of code writer.

The implementation could also have been achieved by having two separate classes of code

writers with different capacity. But then this would mean code duplication. So at the end the

idea of having one code writer was implemented. This represented maturity of code writing

as it requires the close follow up on the classes whenever it was used.

 36

3.4.5. Testing

For the complete testing both the white box and Black box testing have been carried out to

make sure that the system is working correctly. If errors were found they were resolved and

the process of testing was restarted from scratch to ensure the changes successfully solved

the problem.

3.4.5.1 Units testing

The unit testing has been carried to make sure that those parts that were added to the original

classes are okay and functioning correctly. This used the white box principles and J Unit has

been used for testing the parts which were added or changed in order to satisfy the

functionalities of iteration 1. The tests were all successful for these parts.

3.4.5.2 Functional testing

Functional testing which is concerned with the “correct” functionality of the package was

undertaken using a black box approach. The system was later tested to see if all the

functionalities can be fulfilled. A series of test cases case was used to try to establish each

requirement. Refer to the appendix E for the full list of the testing table and results.

3.4.6. Revision Analysis

The first Iteration has been successfully implemented. The user can use all features and be

able to see multiple views of the execution. However though some bugs that would interfere

with the further development and functionality of the system were resolved successfully but

there are still some for bugs which required lengthy analysis. These will not interfere with

 37

system development or key functionalities of the system so it was better to leave them to be

solved in the future.

Reference Number Bug Description

B1 Two objects can share the same name

B2 The code writer stops displaying text after the user has

used it more than 6 times

B3 The colouring of the active cell the Robot World is

incorrect when there are 2 or more robots present

Table 3.4.6 List of Iteration 1 Bugs

3.5. Second Iteration

3.5.1. Aim

The second Iteration will focus on mainly two things. The first one will be to make the Code

writer more intelligent and give more feedback to the users. And the second will be to focus

on making the tutorial for students in order to use it well to understand the concepts of

object oriented programming languages.

 38

3.5.2. Functional Requirements
Functional

Requirement

Test Expected Actual

FR11 The system detects where the error is in
the piece of code entered by the user

Pass Pass

FR11.1 The system detects Creation Statement

Errors

Pass Pass

FR11.2 The system detects object Method

Errors

Pass Pass

FR11.3 The system detects Conditional

Structure Errors

Pass Pass

FR11.4 The system detects Loop Structure

Errors

Pass Pass

FR11.5 Feedback given to users to show them

where the errors are and how to rectify

the error

Pass Pass

FR11.6 Color the string of error code with Red

Error

Pass Pass

FR12.1 Introduction page describing the control

structures and other object source of

information of OO programming

Pass Pass

FR12.2 User provided with Sequence Control

Structure Tutorial

Pass Pass

FR12.3 Users provided with Conditional

Control Structure Tutorial

Pass Pass

FR12.4 Users provided with Loop Control

Structure

Pass Pass

UR13 Sound to make sure the user knows the

code has failed

Pass Pass

Table 3.5.2 Iteration 2 Functional Requirements.

 39

3.5.3. Detailed Design Analysis

The syntax checker will keep track of the user codes input and provide assistance when the

user makes a syntax error. In this way the user will always know where he has made a

mistake. The line with the error problem will be highlighted in red color and a suggestion

feedback of how to correct the error will be given to the user as a pop up. The code written

will not run until all the errors have been rectified.

Most of the errors will be captured by the code writer but it is not possible to be able to find

all the exact errors the users have made. The lists of errors that can be trapped by the syntax

checker are listed in the Appendix G.

The tutorial on how to use the Robot World Simulator will be written in html so as it can be

used in web browsers. The tutorials will be loaded from the menu bar. The tutorials open up

as a side frame and the users can read through while continuing using the simulation. Some

tutorials have a starting point and once opened they will load object on the Robot World so

that the users can continue manipulating them. When the tutorials are opened a tutorial menu

will appear to track the progress of the users and see if they have completed the tutorials

successfully.

The simulator has to play a sound whenever there is an anomaly to the normal execution of

the Robot World simulator. The anomalies from which the sound will be produced are listed

in the appendix H.

 40

Appendix D lists the detailed class diagram of how the design of the syntax parser and the

tutorial was achieved.

3.5.4. Implementation

The implementation of the syntax checker has been by far the toughest part of the project.

The idea behind was to capture as many errors as possible and yet to use efficient and tidy

code.

The first approach that was desirable was to go through word after word and try to check if

it is correct according to writing the structure of a particular statement. If the word has

syntax error or poor programming styles then we simply output the possible errors and

feedback. This would make sure every phrase of the entered code is checked. However it is

only applicable if the input to look for errors is small. If the source of statements to check

for errors is large then it might require a volume of code to be written.

The second approach that could also be taken was to use regular expression. [21,22] Regular

expressions were created to describe different type of errors and programming styles that the

user could have run into and stored in HashMap. For each regular expression stored as a key

there is a corresponding feedback message set as a value. The statement with error was

broken into a number of word tokens and stored in an array. Then the tokens have to then be

matched against the regular expression. When they match the feedback will be output using

that regular expression. At the end if there is no match then the default feedback is given to

the students. This was advantageous as it keeps the code tidy and allows the capture of more

 41

errors with few java codes. But at the same time it is hard to implement and requires a lot to

be done and there is chance that some words might be overlooked.

At the end the syntax parser was implemented using the regular expression due to the fact

that the code was tidy and would allow easy expansion of error checking mechanism in the

future.

For the tutorial part the hard thing was to link the Robot World to the tutorials the students

has to go through. The tutorials were created as web browsers using HTML. These were

embedded to the Frame of Java swing and in that way they could be called from the Robot

World using a Menu button.

The trick to add the sound to the system whenever an error occurred was where in the Robot

World class to add the method to play the sound. One way was to add the sound clip

separately for every action that has been performed on the Robot World and put a condition

that if the action usefully completes then the system shouldn’t play any sound. The other

option was to make sure that the sound clip is added at the class that controls the

visualization change. In this way once the visualization changes which do not complete the

sound clip should play to signify the errors.

The later method was implemented because it first allowed only one method to be added to

the entire package and hence reduced code duplication and at the same time it was able to

capture all the irregularities of the Robot World and play the sound clip.

 42

3.5.5. Testing

Testing was redone for the second iteration after it was implemented. It used the same

approach of white box and black box to be able to test both the quality of codes and the

fulfilment of the functional requirements. New test cases were created to fit only to the focus

of second iteration requirements

3.5.5.1 Unit testing

White box testing was done by Unit testing. The unit testing looked at those parts of the

system that were added only in Iteration 2. This was done using White box system where the

methods that were added in the second Iteration including the check Syntax were evaluated

to find if they contain any errors. At the end, the systems were found to contain no errors as

the source code functioned correctly.

3.5.5.2 Functional Testing

This used the black box testing .As in first iteration after the system was developed it was

tested against the functional requirements to see if it meets all the needs. Most of the user

requirements were satisfied but they were a number of anomalies in checking for errors in

the condition and loop structures as tabulated in the Appendix E.

3.5.6. Revision Analysis

The system has been implemented to the original plan but still just like in the first Iteration

at the end of this part as well there were some bugs that the system contained. Table 3.5.6

shows the bug which were not resolved.

 43

Reference Number Bug

B4 The syntax checker doesn’t trap all the errors

B5 The errors location can sometime mislead

B6 The tutorial image when opened from Java

Robot World simulator GUI are distorted

Table 3.5.6: List of Iteration 2 Bugs

 44

4. Evaluation

The Robot World simulator is designed to be an effective teaching tool for novice

programmers. In order to find out if it has been successful it was vital to revisit the user

requirements and find out if it can serve the user requirements it was originally developed

for. To achieve true evaluation of the user requirements, the users had to be approached to

evaluate the system and see if their requirements were fulfilled

4.1. The Evaluation Strategy

The tutorial is lengthy and requires a person to settle down for quite some time in order to

complete all the tutorials and get a deep understanding of the Object Orientation principles.

It was then not possible at this evaluation stage to ask volunteers to do the whole tutorial in

order to evaluate it. To overcome that deficit a set of tutorial in terms of tasks were created

and users asked to perform those tasks to completion and give feedback on how they found

the Robot World simulator to be. This can be obtained by running the evaluation copy. After

attempting a set of 3 tasks the evaluators were provided with open mind questions in order

express their views on how they see the program and not how it is used.

Quality and not quantity is the key attribute for better evaluation and therefore the evaluators

were chosen from three groups of novice programmers, experienced programmers in order

to get a good feedback it is better to include the opinions of different parts. The evaluators

were left to go through the tutorial on their own and were observed closely and given

assistance when and where necessary.

 45

4.2. Feedback from Evaluators

The evaluators looked at different perceptive of the system and raised a number of issues.

For those issues that were important for this particular project and required immediate

actions they have been changed and for the other issues that were not the primary concern of

this project and require in depth analysis have been left for future improvement.

4.2.1. Using Code Writer

The evaluators felt that as the code writer was output codes it was to keep track on which

code is the most recent one and needed to be associated with the visualization change that

has occurred. A suggestion was then given to make the most recent code be different

compared to other codes that were there before. This was seen as vital change and was

implemented right away.

In addition to that, it was suggested to have auto complete feature to finish up java codes for

novice programmers. However this will hide the possibility of students running into errors.

Therefore it was seen that the feature that may require in depth analysis. It wasn’t

implemented and left for future work that will be done on the Robot World simulator.

4.2.2. Text Viewer

The text viewer has been seen to output human language. The interface was criticized as

always displaying words and it might be hard to follow through and discover which line was

showing the visualization change that has occurred. Because this change was vital to the

requirements of this project then the change was implemented right away.

 46

4.2.3. 3D Visualization

The visualization panel is the part of the Robot World that received much criticism and

applause. The experienced programmers liked the way it was implemented and were happy

to use it but the novice programmers raised a number if concerns.

First and foremost the Directions are not clear. The students felt that the directions given as

North, South, East and West Direction should reflect the normal directions. This way it will

be much easier for the students to control the objects according to the directions.

Of the other things the students commented on was the Robot World origin. The origin (0,

0) was on the right and the scrollbars were located to start at top most right for the y axis and

left bottom corner. This confused students who are familiar to using graphs in Cartesian

coordinate.

The last suggestion given for the visualization panel was on how to increase the interaction

of users by allowing the cells to be clickable. Evaluators felt that if the cell were editable

and allow actions then the user could interact more freely with the visualization and be able

to learn better.

4.2.4. Language

The language used in various parts of the system was seen as the problem. In the task to be

carried it was still unknown what the term „Robot World‟ represents. In some cases it

 47

represented the area of visualization of the objects while in some cases it represented the

whole simulator.

On top of that the language used in the tutorial was also seen as to contain a lot of technical

terms that may not be appropriate for the novice programmers. Instruction like “create a

robot in cell” 0, 0 was seen as if is too technical. This hadn’t had such a big impact and was

left for future analysis and implementation.

Appendix I summarizes the suggestion that have been obtained from the evaluators and the

state to whether they have been implemented or not.

4.3. Future Improvements for RobotWorld Simulator

The Robot World simulator has so far been able to teach the concepts of creating objects,

methods and the control structures of conditional and loop structures. However there are

some aspects of object orientation concepts and user requirements that have not been

achieved by this system. These concepts are Encapsulations, Arrays and Inheritance. It is

good to introduce these concepts so that the students can understand them early as they will

be useful in the future of their programming.

The 3D graphics that are currently displayed on the simulator are good but not efficient. The

directions are still confusing and sometimes it is hard to know where north and south really

are. Much work still needs to be done on the visualization to make it more attractive and

efficient.

 48

In addition to this, the syntax checker the Robot World simulator cannot find all the errors

that can be made by novice programmers. It is really hard to find all the errors that can be

made by the students. Some even write things that are not known even in any language and

it is hard to trap all these errors. Thus the future work should be done on this area to expand

the scope or errors to be trapped by the code writer.

Most of the work done in Robot world has been directed to the interface and the tutorial

which should be taken as the main part has been ignored. Therefore future work to be done

on Robot World simulator should be directed to the tutorials in order to address the

pedagogical problems of teaching java to novice programmers.

4.4. Evaluation Summary

The approach of choosing wide variety of evaluators has resulted in useful feedback that

will be incorporated in the Robot World teaching tool in order to make it more user friendly

and effective.

From the test cases most of the functionalities of the Robot World system as projects were

validated. What was left was trying to see if those functionalities would serve the user

requirements of teaching OO concepts to real users. This was proved by the evaluators who

felt the Robot World system to be very useful. The evaluators liked the fact that the teaching

tool had 3D graphics and that it was easy to use. In a large part the Robot World simulator

was found to teach well the principles of OO in java and transition students from

Visualization to code writing if well followed.

 49

Although the simulator has been found to contain many features that can help introduce the

students into the concepts of OO, it can still be see that the simulator is limited in a number

of ways when it is being used as observed by the evaluators. They pointed these out and the

suggestions which were felt to be important have been added to the suggestions for future

work on Robot World Simulator for Java.

 50

5. Conclusion

When the project first started its main aim was to create an instance to help the students

input java codes. But after a review of the previous work done on the Robot World and on

the visualization teaching tools, the aim was extended to include a gradual transition to code

writing with an additional feature of assisting the novice programmers once they run into

errors or poor programming styles.

The original aim of the project has thus been achieved as a new Robot World system that

has a gradual transition from using control buttons to complete code input has been created.

A series of tutorials have been prepared which can direct the students to learn the concepts

of OO programming on their own.

The source code has been extended neatly from the precious source codes and allows room

for improvement in case there is a need to follow up on this work.

The two types of code writers allow the users to gradually learn how to write proper java

codes step by step. The feedback given to students is resourceful enough to direct the users

to become better programmers.

In conclusion a new and efficient Robot World simulator has been achieved which can be

seen to narrow the transition gap from OO introduction through visualization to code writing

and with which there is no doubt that it will be beneficial to teaching OO programming to

novice programmers.

 51

6. Bibliography

[1] Kaasboll, J, Learning Programming, University of Oslo 2002.

[2] Kölling, M, Henriksen, P,Game programming in introductory courses with direct state
manipulation, Proceedings of the 10th annual SIGCSE conference on Innovation and
technology in computer science education, June 27-29, 2005.
http://www.greenfoot.org/papers/2005-06-ITICSE-greenfoot.pdf

[3] Kölling, M, Henriksen, P, Greenfoot: combining object visualizations with interaction,
Companion to the 19th annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, October 24-28, 2004, Vancouver, BC, CANADA .
http://www.greenfoot.org/papers/2004-10-OOPSLA-greenfoot.pdf

[4] Chen , Z , Marx, D, Experiences with Eclipse IDE in programming courses, Journal of
Computing Sciences in Colleges, v.21 n.2, p.104-112, December 2005
http://portal.acm.org.chain.kent.ac.uk/citation.cfm?id=1089068&dl=GUIDE&coll=Por
tal&CFID=51627811&CFTOKEN=33970768

[5] Cannock R. “Robot World Simulator for Java”, MSc dissertation, University of Kent,
1999.

[6] Naps, T, Rößling, G, Almstrum, V , Dann,W. , Fleischer, R , Hundhausen ,C , Korhonen,
A , Malmi, L , McNally, M , Rodger, S , Velázquez-Iturbide ,J. A. Exploring the role of
visualization and engagement in computer science education, Report of the Working Group
on “Improving Educational Impact of Algorithm Visualization . 2002
http://portal.acm.org.chain.kent.ac.uk/citation.cfm?id=782998&dl=ACM&coll=portal
&CFID=50041492&CFTOKEN=20185429

[7] Doherty, L, Lougheed,P, Brokenshire,D, Jordanov
Jordanov, M, Rao, S., Shakya, J, Recognizing opportunities for mixed-initiative interactions
based on the principles of Self-Regulated Learning, AAAI Fall Symposia on Mixed-Initiative
Problem-Solving Assistants, Crystal City, VA, USA, accepted for publication.
http://www.stanford.edu/~smenon/professional_files/publications/recognizing_opportu
nities_for_mi3.pdf

[8] Becker, B. W, Teaching CS1 with karel the robot in Java, Proceedings of the thirty-
second SIGCSE technical symposium on Computer Science Education,
p.50-54, February 2001, Charlotte, North Carolina, United States.
http://www.cs.uwaterloo.ca/~bwbecker/papers/sigcse2001/karel/

[9] Kölling M, Rosenberg J, An object-oriented program development environment for the
first programming course, Proceedings of the twenty-seventh SIGCSE technical symposium
on Computer science education, p.83-87, February 15-17, 1996, Philadelphia, Pennsylvania,
United States

 52

http://portal.acm.org/citation.cfm?id=236514&dl=GUIDE&coll=GUIDE&CFID=5112
2965&CFTOKEN=41377118

[10] Mullins ,P, Whitfield ,D. Conlon ,M, Using Alice 2.0 as a first language Journal of
Computing Sciences in Colleges, Volume 24 , Issue 3 (January 2009) Pages 136-143
http://delivery.acm.org/10.1145/1410000/1409900/p136
mullins.pdf?key1=1409900&key2=4537852521&coll=GUIDE&dl=GUIDE&CFID=522
28163&CFTOKEN=11730358

[11] Olan ,M, Dr. J vs. the bird: Java IDE's one-on-one, Journal of Computing Sciences in
Colleges, v.19 n.5, p.44-52, May 2004
http://portal.acm.org.chain.kent.ac.uk/citation.cfm?id=1060089&dl=ACM&coll=portal
&CFID=50041492&CFTOKEN=20185429

[12] Moreno, A , Myller ,N, Sutinen, E , Ben-Ari, M, Visualizing programs with Jeliot 3,
Proceedings of the working conference on Advanced visual interfaces, May 25-28, 2004,
Gallipoli, Italy. http://delivery.acm.org/10.1145/990000/989928/p373-
moreno.pdf?key1=989928&key2=5568852521&coll=GUIDE&dl=GUIDE&CFID=5222
8163&CFTOKEN=11730358

[13] Chaundry, M.K, “Robot World Simulator in Java”, MSc dissertation, University of
Kent, 2000.

[14] Webber, S, “Robot World Simulator in Java”, MSc dissertation, University of Kent,
2001.

[15] Fisher, A. J, “Robot World Simulator in Java”, MSc dissertation, University of Kent,
2003.

[16] Turner,G, .Watling, R, Lee, H. G, “Robot World Simulator in Java”, Undergraduate
Project, University of Kent, 2004.

[17] Wang, Z, “Robot World Simulator in Java”, MSc dissertation, University of Kent,
2005.

[18] Penna,R. “Robot World Simulator in Java”, MSc dissertation, University of Kent, 2007.

[19] Addison J, Ademol,J, Shermohammad, A, Joe Pang, H.W, Pang , K W H, “Robot
World Simulator in Java”, Undergraduate Project, University of Kent, 2008.

[20] Ihedioha, N, Lin, W Liu, J, Phipps, K, “Robot World Simulator in
Java”, Undergraduate Project, University of Kent, 2009.

 53

[21] Kelleher ,C, Pausch ,R, Lowering the barriers to programming: A taxonomy of
programming environments and languages for novice programmers, ACM Computing
Surveys (CSUR), v.37 n.2, p.83-137, June 2005.
http://www.cs.cmu.edu/~caitlin/papers/NoviceProgSurvey.pdf

[22] Deitel, P. Deitel, H,Java How to Program, 7th Edition, Pearson Education Inc, 2007.

[23] Turner, J. A, Zachary ,J L., Javiva: a tool for visualizing and validating student-written
Java programs, Proceedings of the thirty-second SIGCSE technical symposium on Computer
Science Education, p.45-49, February 2001, Charlotte, North Carolina, United States.
http://delivery.acm.org/10.1145/370000/364535/p45
turner.pdf?key1=364535&key2=6681678321&coll=GUIDE&dl=GUIDE&CFID=29532
977&CFTOKEN=16906864

[24] Reis, C., Cartwright, R, A friendly face for Eclipse, Proceedings of the 2003 OOPSLA
workshop on eclipse technology exchange, p.25-29, October 27-27, 2003, Anaheim,
California. http://delivery.acm.org/10.1145/970000/965666/p25-
reis.pdf?key1=965666&key2=7132678321&coll=GUIDE&dl=GUIDE&CFID=2877616
2&CFTOKEN=27156998

[25] n, also

[26] Niemeyer, P, Jonathan K, Learning Java 3r Edition, O‟Reilly, 2005.

[27] Fenner, T, Loizou, G, Mannock, K, Vee, M.C (2009). A Simple Interactive
Development Environment for C# available at
http://www.dcs.bbk.ac.uk/~keith/research/sIDE/paper/jicc7.pdf last accessed on 03rd
April 2009

 54

7. Appendices

Project Strength Weakness
Cannon

 Explain clearly the objectives
of the project.

 textual representation of the
robot world

 Primitive Code
 Outdated
 Contains less features
 Doesn’t contain Code

Writer

Sally Webber
 Tutorial based learning(The

first sign of code writer)
 Warning messages

 Almost the same as

that of Cannon
 Still contains less

features
 Doesn’t handle

exceptions well
(Program failure)

 Doesn’t contain Code
Writer

Adam Fisher

 state information of the robot
 algorithms to which it can find

the best path from one location
to another


 clicking on a cell has

no effect
 Doesn’t contain Code

Writer

Undergraduate
Project
2004/2005

 Good User Interface
 Well commented.

 Less feedback to users
 Doesn’t contain Code

Writer

Wang
 Good feedback to users when

error is encountered

 Doesn’t contain Code

Writer

Penna
 Easily understood
 Contains the code-Builder
 Well documented source code

 Doesn’t contain Code

Writer
 unnecessary feature-

Code Builder

 55

 Does not have the
tutorial

Undergraduate
2007/2008

 Used 3D Visualizations.

 Does not contain

code writer

Undergraduate
2008/2009

 Used 3D Visualizations.
 Contains the code writer

 Contains the tutorial

Appendix A: Summary of Previous Work on Robot World

 56

Feature Undergraduate

Project 2008/2009
New Robot World
Simulator

Reason

F1 Switch between the
Code Writer , control
buttons and the
location finder

Both displayed at the
same time

Make the user see
the code writer and
Control buttons and
choose the one to use

 Contains the
location finder as
the a menu item

Location finder
replaced by the
Status Bar

No need for a
separate location
finder menu as the
status bar will be
there

 Has no Status Bar Has a Status Bar Displays constantly
the location of the
selected cell

 Pop up when
anomalies appear
during robot
movement

Provide pop ups and
animations when
anomalies appear
during robot
movement

Addition of
animation to keep
the user entertained

 The buttons and the
code writer control
object at different
times

User able to control
the same object
using buttons and
code writer
interchangeably

User can start using
the control at one
time and switch to
code writing on the
same object

F4 No Interactive Code
Writer

Has Interactive Code
Writer

Code writer is seen
from start when the
Simulation is opened
up

 Code Writer has a
complex syntax
checker

To allow the system
to pick up errors
suggest solutions

 Displays Java Codes
output when students
use Visualization
control buttons

To allow the students
to make relationship
between java codes,
human language and
visualization

F5 Code Writer has a
simple checker

Code Writer has a
complex syntax
checker

To allow the system
to pick up errors and
suggest solutions

 Can load contents
from the Interactive
Code Writer

To give users a
starting point

F6 Output Java
Statements

Output Pseudo codes Close to human
language and code

 57

writer already has
Java statements

F7

Output Information

Displays the active
cells

Always know where
the student is in the
visualizations

F8

Scans user inputs
and alerts the user
when he has made an
error

Alerts the user where
an error is made and
provide assistance

Picks up errors and
suggests corrections

Appendix B: Features that the New Robot World will contain that will be different from the
Previous Robot World.

Appendix C: Iteration 1 Class Diagram

 58

Appendix D: Iteration 2 class Diagram

 59

Functional

Requirement

Test Details Expected Actual

FR 1

All the features

are seen in Robot

world window

when the system

loads the first time

 Robot World PASS PASS

 Code Writer PASS PASS

 Control Buttons PASS PASS

 Text viewer PASS PASS

 Status Bar PASS PASS

 Menu Bar PASS PASS

FR2

Navigate through

Control Buttons

and Code writer

 PASS PASS

 Control buttons are clickable PASS PASS

 Write on the code writer PASS PASS

FR3

Visualize the

robot world

movements in 3D

 PASS PASS

FR4

Control the object

by using control

buttons

 PASS PASS

FR4.1 Create objects (robot, a cone

and a barrier) by clicking on

the control button

PASS PASS

FR4.2 Move the robot forward by

 60

 clicking the control button

move forward

FR4.3

 Move the robot backward by

clicking the control button

move backward

PASS

PASS

FR4.4

 Robot turns left when the user

clicks the button turn left

PASS

PASS

FR4.5

 Robot turns right when the

user clicks the button turn

right

PASS

PASS

FR4.6

 Robot picks a cone when the

pick cone button is used

PASS

PASS

FR4.7

 Robot drops a cone when the

drop cone button is used

PASS

PASS

FR4.8

 Robot moves into a cell

where there a barrier when

using the control button

PASS

PASS

FR4.9

 Delete objects (robot, cone

and barrier) from the Robot

world by using control

buttons

PASS

PASS

FR5

Manage objects by

using Code Writer
 PASS

PASS

FR5.1

 Objects(robot, a cone and a

barrier) are created by writing

the java code to create objects

on the code writer

PASS

PASS

FR5.2

 Robot moves forward s by

writing the java code to move

forwards

PASS

PASS

 61

FR5.3

 Robot moves backwards by

writing the java code to move

backwards

PASS

PASS

FR5.4

 Robot turns left by writing the

java code to turn left

PASS

PASS

FR5.5

 Robot turns right by writing

the java code to turn right

PASS

PASS

FR5.6

 Robot picks a cone when the

pick cone java code is written

PASS PASS

FR5.7

 Robot drops a cone when the

drop cone java code is written

PASS PASS

FR5.8

 Move a robot into a cell

where there is a barrier when

using the code written

PASS PASS

FR5.9

 Delete objects (robot, cone

and barrier) from the Robot

world by writing java codes

on code writer

PASS PASS

FR5.10

 Use Conditional Structure to

control object in Code Writer

PASS PASS

FR5.11

 Use Loop Structure to control

object in Code Writer

PASS PASS

FR6

Use control

buttons and code

writer

simultaneously

 PASS PASS

 Create objects(Robot, Cones,

and Barriers) by using

Control buttons and manage

them by using control buttons

PASS PASS

 62

 Create objects(Robot, Cones,

and Barriers) by using code

writer and manage them by

using control buttons

PASS PASS

FR7

Text viewer

outputs Java codes

when Control

button are used

 PASS PASS

FR8

The Text viewer

outputs pseudo

codes when the

code writer is used

 PASS PASS

FR9

Te status bar

displays the

location of the

selected all the

time

 PASS PASS

FR10

Menu bar contains

a function that has

Code Writer and

Code Editor

 PASS PASS

FR10.1

 The Interface changes to

Code Editor when the sub-

menu Code writer under

menu Function is clicked

PASS PASS

 The Interface changes to

Code Writer with Control

Buttons when submenu Code

Window is chosen

PASS PASS

Appendix E: Iteration 1 Test Cases

 63

Functional

Requirement

Test Expected Actual

FR11 The system detects where the error

is in the piece of code entered by the

user

Pass Pass

FR11.1 The system detects Creation

Statement Errors

Pass Pass

FR11.2 The system detects object Method

Errors

Pass Pass

FR11.3 The system detects Conditional

Structure Errors

Pass Pass

FR11.4 The system detects Loop Structure

Errors

Pass Pass

FR11.5 Feedback given to users to show

them where the errors are and how

to rectify the error

Pass Pass

FR11.6 Color the string of error code with

Red Error

Pass Pass

FR12.1 Introduction page describing the
control structures and other object
source of information of OO
programming

Pass Pass

FR12.2 User provided with Sequence

Control Structure Tutorial

Pass Pass

FR12.3 Users provided with Conditional

Control Structure Tutorial

Pass Pass

FR12.4 Users provided with Loop Control

Structure

Pass Pass

UR13 Sound to make sure the user knows

the code has failed

Pass Pass

Appendix F: Iteration 2 Test Cases

 64

Structure Errors

The class name begins without Capital letter

Class variable begins with Capital letters

The keyword “new” is missed

Unpaired brackets

Cell value entered is not an integer between 0 - 5

Color entered without type of color

Missing semicolon

Object Creation Statement

Missing closing brackets

The object variable begins with Capital letter

Missing brackets and semi colon

Space left between connected words

The second word does not start with Capital letters

Methods Statements

Direction is not given to the robot

Invalid variable

Variable starts with Capital letter

Invalid Method

Missing Opening brackets

Missing closing brackets

Missing Parameters brackets

Missing brackets

Conditional Structures

Method start with capital letter

Missing Parameters brackets

Method start with capital letter

Missing Opening brackets

Missing closing brackets

While Structures

Method start with capital letter

Appendix G: Errors that can be trapped by the syntax Checker

 65

Appendix H: Anomalies where the system plays a sound

 Robot can not move forward
 Robot can not move backward
 Robot can not be added
 Barrier can not be added
 User has made an error when inputting java code

 66

Feature Specific Suggestion Status

Code Writer Change the color of the text

displayed when user clicks the

control button

Fixed

 Auto complete features Left for future

Improvements

Text Viewer Change the way the active event is

displayed

Fixed

Visualization Panel Directions are not clear Left for future

Improvements

 The origin is different from normal

Cartesian origin.

Left for future

Improvements

 The cells should be interactive to

students. Students should be able

to click and use cells directly

Left for future

Improvements

Language Ambiguous use of Robot World

and Simulator. Is robot word the

whole system or is it just the

visualization Panel

Improved

 Language is technical Improved

 Instructions are not enough. Some

feature is still not clear on what

they do.

Improved

Miscellaneous The load button on the Interactive

interface is not needed

Fixed

Appendix I: Suggestion from Evaluators.

