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[bookmark: _Hlk153990341]Mining operations generate substantial volumes of waste, often stored in tailings storage facilities (TSF). The TSF are notorious for their potential to cause environmental pollution, especially when tailings enter surface or ground waters. Effective monitoring of the TSFs is therefore crucial for sustainable mining operations. This study investigated potential microseepage at the Geita Gold Mine (GGM) in north-western Tanzania, in the Lake Victoria goldfields of Geita Region. The TSF performance was assessed by analysing water quality parameters (pH, sulphate, nitrate, and total dissolved salts) in upstream and downstream boreholes. The findings reveal noteworthy variations in the readings between upstream and downstream boreholes. The boreholes located upstream the TSF showed parameter concentrations in the ranges of pH (5.5 – 7.3), sulphate (0.42 – 7.90 mg/L), nitrate (0.02 – 2.8 mg/L), and TDS (40 – 221mg/L). In contrast, the downstream boreholes showed parameter concentrations of pH (5.5 – 7.1); sulphate (160 – 613 mg/L); nitrate (0.02 – 19.9 mg/L) and TDS (360 – 1,167 mg/L). These variations suggest the existence of microseepage downstream of the TSF, exceeding Tanzania Bureau of Standards limits in some cases. To assess and mitigate potential microseepage risks, correlation analysis and artificial neural network modeling were employed. While correlations between variables were generally weak, the model achieved 91.32% accuracy in predicting water quality based on historical data. These findings highlight the importance of continuous monitoring and advanced modeling techniques for managing TSFs and preservation of the local ecosystems.
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[bookmark: _Toc181202256]INTRODUCTION
[bookmark: _Toc181202257]1.1 Background to the Study
The mining industry undoubtedly contributes largely to economic growth and advancement of science and technology worldwide (Litvinenko, 2020). It is estimated that in 2023 alone the world produced more than 2.5 billion tons of iron ore, 182 Million tons of industrial metals, 1.5 Million tons of technology and precious metals (Lederer et al., 2024). The quantities of mineral production explicates the significant amount of funds generated from the mining activities in which respective country’s benefits from tax revenue, royalties as well as employment opportunities (Dubey, 2017). In Tanzania on the other hand, strategic review of the Mining Acts and Regulations, among others, witnessed an ongoing formalisation of artisanal small scale miners and increase large scale mining investments (Pedersen et al., 2019) . In recent years, the investment surge has significantly increased mineral production and result into numerous economic benefits to the country (Huggins & Kinyondo, 2019).

However, such economic benefits leave behind environmental footprints that affect air, soil, and water sources (Jia & Dai, 2021). In the long run, such pollution threatens not only the existence of mankind but also the biological and ecological attributes of other living organisms (Jia & Dai, 2021). Mining produces voluminous amount of waste that are stored as waste rock dump (WRD) and tailings storage facility (TSF) (Shengo, 2021). In a finite context, during mineral commodity recovery, 1g of metal results into 1 ton or even more of wastes (Kalisz et al., 2022). Majority of the wastes end up to the surrounding environment with devastating environment impacts (Aznar-Sánchez et al., 2018). The mine wastes are mostly stored on the earth’s sub-surfaces in which are prone to leaching and oxidation activities (Sundar, Padmini, & Devi, 2023).

TSF is one of the major structures that stores tailings mostly of metallic minerals (Shengo, 2021). Tailings are known for environmental pollution behaviour as a result of potential acid-forming (PAF) and heavy metals discharge at the surface or/and in underground water bodies (Lemos et al., 2020). Mitigation measures i.e environmental and social impact assessment (ESIA), environment management plan (EMP), environmental audit (EA) etc are conducted with little perceptible output especially in areas surrounding the mining activities (Gilsbach et al., 2019). 

TSF requires complex scientific and engineering considerations before and during construction to guarantee the best performance of the facility (Owen et al., 2020)  (Chovan et al., 2021). The design consideration include but not limited to site selection, topology, permitting procedure, soil profile, geotechnical investigations, tailings mineralogy, soil and rock tests, weather condition and information of flooding activities (Adamo et al., 2021) (Clarkson & Williams, 2021) (Franks et al., 2021) (Franks, 2021) (Hancock and Coulthard, 2022). Design categories must ensure safety in terms of stability and appropriate liner placement to protect unprepared environment from tailings discharge (Reddy et al., 2019). In general, the design includes failure analysis, sequential raise of embankment/wall as per the projection of life of mine (LoM) (Williams, 2021). It is theatrically certain that robust designs and appropriate TSFs management provide stable, safe, and pollution-free structures (Cacciuttolo & Atencio, 2022) (Chen et al., 2021) . 

However, with all the theories and routine construction practices, studies show that TSFs are still one of the major sources of surface and underground aquifer contamination (Keskin & Ozler, 2020). The contamination occurs because of lateral or/and vertical seepage  (Liang et al., 2017). For example, (Acheampong & Nukpezah, 2016) observed seepage concentrations levels particularly of heavy metals and pH values at the Nzema gold mine, in Ghana that exceeded the standards when analysed by means of statistical approach. The concentration levels of Fe and Mn at the surface and underground water downstream were higher than the acceptable thresholds at the TSF located at Bumadinho area in Brazil where the concept of MODFLOW were employed (Lima et al., 2024) .  Further, heavy metals pollution to surface and underground water due to leachates and seepage observed at the downstream of the TSF of Sabie - Pilgrims's Rest Goldfields in the Republic of South Africa even after the closure of the mining operations (Lusunzi, 2018). 

Furthermore, a study conducted at Katoma village located in Geita Region in the United Republic of Tanzania along the downstream area shows elevated levels of chromium and sulphate beyond baseline values (Emel et al., 2014). These are some of the study findings which provide evidences of TSF behaviours of discharging mineralogical substances that have significant environmental adverse (Dong et al., 2020) . The mineralogical substances existing in solution mostly depends on the parent rocks (Trifi et al., 2019). For, instance, Iron and Manganese concentrations in Bumadinho, Brazil originated from hematite rocks which eventually produced Fe-rich rock fragments that when in aqueous form dissipated into downstream water sources (Lima, et al., 2024). The observation of elevated level of sulphate and chromium supports the fact that parent rocks in Geita (known to be rich in gold deposits) consist of sulphide minerals that enhance heavy metals mobility at low pH (Emel at al., 2014 ; Kicińska et al., 2022).

Researchers have proposed different methods as alternatives to minimise seepage from different water and tailings storage facilities. The methods include; Darcy’s Law, Finite Element Modelling (FEM) as well as more advanced methods which include machine learning (ML) (Fetisov et al., 2020; Li et al., 2019; Yang et al., 2019). Darcy’s Law method analyses the permeability of rock fragments at the wall for linear seepage control of the hydropower embankment dam (Li et al., 2019). FEM involves the use of drainage holes to create simulated curtains that prevent microseepage at the TSF (Xu, 2019). Darcy Law and FEM methods can also be combined efficiently for seepage control at different hydraulic water levels (Zhou, Chen, Hu, & Yang, 2023). The combination considers the pressure differences between down and upstream aquifers (Salmasi et al., 2020). Machine learning (which include supervised and unsupervised) is one of the state-of-the-art data analytics tools (Berry et al., 2019). It can solve both linearity and nonlinearity problems with great accuracy score (Berry et al., 2019). Machine learning was used in solving natural science problems through modelling technique to attain optimal solutions (Sarker, 2021). However, control of microseepage has never considered monitoring data gathered from TSF operation for environmental protection.
In that regard, this research focuses on Geita Gold Mine (GGM) case study to provide solution to microseepage control. GGM lies within greenstone belts known to host massive gold deposits from sulphide-rich minerals (Kabete et al., 2012) (Katz et al., 2021). Greenstone belts are geologically known to host large amount of Archean gold deposits that can economically be extracted (Hastie et al, 2020) . The evidence of these gold deposits being within or in a close proximity to the greenstone belts found in various parts of the world such as Western Australia, Canada, South Africa, Zambabwe, and Tanzania to name just a few (Baranov & Bobrov, 2018; Kwelwa et al, 2018). 

The gold within greenstone belts at GGM is associated with sulphide minerals such chalcopyrite, pyrite, and galena (Van Ryt et al., 2017). Some of the sulphide minerals are known to undergo oxidation processes under the supply of unlimited oxygen and water. Such chemical processes are worthy to monitor. Surface and underground water monitoring using shallow and deep boreholes can be used (Banks et al., 2021). Consequently, this extends to monitoring of surface water runoff due to leachate problems and other sediments washouts from the TSF, pits and WRD (Karlović et al., 2023). 

In this study, the use of the dataset from 2016 to 2022 related to monitoring activities will be used for assessment of pollution footprint especially along the downstream of the TSF. The analysis of the monitoring samples will be used through a combination of statistical approach and the use of the state of the art modelling techniques to outline possible cause and effect of microseepage as well as restructure the operating procedures of the TSF.  
[bookmark: _Toc101386949][bookmark: _Toc181202258]1.2 Statement of the Research Problem
Studies have shown that seepage is a problem in most TSFs as can occur during mine operations, closure and even decommission of the mining projects (Fetisov & Menshikova, 2020; Lusunzi, 2018; Nordstrom, 2019). Some of adverse environmental effects include oxygen decrease in water, low pH, and mobility heavy metals (i.e Lead, Chromium, and Arsenic etc) that are dangerous to terrestrial, aquatic organisms and human beings at large (Rahman & Singh, 2019).

Different mechanism used to control microseepage in TSF at different context. However, they have not been directly linked with seepage control from monitoring activities. For example, Darcy’s Law method does not provide complete solution for microseepage within the TSF (Zhu et al., 2017) . 

Similarly, FEM has not been effective enough in microseepage control particularly in the protection of underground water bodies (Wu et al., 2022). The need for more effective alternatives emanating from predictive modeling using sophisticated approaches like machine learning is crucial to eliminate all sorts of setbacks resulted from seepage problems at the TSF (Zhu et al., 2017).

[bookmark: _Toc101386950][bookmark: _Toc181202259]1.3 Research Objectives
[bookmark: _Toc101386951][bookmark: _Toc181202260]1.3.1 General Research Objective	
The main objective of the discourse was to develop an appraisal and control of microseepage at the operating TSF in Geita in relation to surface and underground water pollution in Tanzania.
[bookmark: _Toc101386952][bookmark: _Toc181202261]1.3.2 Specific Research Objectives
The specific objectives of the study were:
i. To assess environmental status for shallow and deep monitoring boreholes at the TSF using sulphate, pH, nitrate, and total dissolved salts (TDS).
ii. [bookmark: _Hlk141264271]To evaluate relationships between input (wind speed, rainfall, and tailings weight) and output (sulphate, pH, TDS, and nitrate) variables; and
iii. [bookmark: _Toc101386953]To develop a scientific model with an optimal solution to control microseepage at the TSF.

[bookmark: _Toc181202262]1.4 Research Questions
The following questions were answered to achieve the specific objectives of the study.
i. What are the current contaminants and pollution levels of shallow and underground water downstream?
ii. What roles do input, and output variables have towards microseepage control of TSF during mining operations?
iii. How can microseepage control of the TSF be monitored effectively using a model?
[bookmark: _Toc99045656]
[bookmark: _Toc181202263]1.5 Significance of the Study
The research was focused on the control mechanism of the microseepage of the sulphide rich tailings of an active TSF at the GGM to appropriately manage surface and underground water contamination. It is vital that modern mining operations incorporate environment considerations for mining sustainability. 
This study provided valuable insights into contamination and control mechanisms within mining operations. By utilizing advanced tools and analysing both historical and current monitoring data, the research highlighted the importance of proactive environmental pollution detection and mitigation. The findings emphasized the need for mining companies to critically assess their monitoring information and implement timely preventative measures.

[bookmark: _Toc101386956]Furthermore, the study revealed seasonal variations in pollution levels, prompting the development of effective strategies for managing tailings storage facilities (TSF) during and after operation. This knowledge contributes to improved TSF construction guidelines, mineral policy implementation plans, and potential amendments to Mining Acts and Regulations. The study also underscored the crucial role of regulatory authorities, NGOs, and civil society in ensuring responsible and sustainable mining practices.

[bookmark: _Toc181202264]CHAPTER TWO
[bookmark: _Toc181202265]LITERATURE REVEW
[bookmark: _Toc181202266]2.1 Tailings Storage Setup and Design
Tailing storage facility (TSF) contains remnant of rock particles (i.e. sulphide, oxide minerals etc) from process plant during commodity recovery (Gibson et al., 2023). The facility divided into three groups namely as downstream upstream as well as centreline (Figure 2.1) (Lyu et al., 2019) . It is constructed by phases through embankments raise using Non-Acid Forming (NAF) rocks (Naeini & Akhtarpour, 2018). NAF materials are widely used because are cost effective and environmentally friendly (Adamo et al., 2021). Mostly include waste rocks found on site during mining excavation and pit development.

[image: ]
[bookmark: _Toc174614007][bookmark: _Toc174614004][bookmark: _Toc181202323]Figure 2.1: Types of TSF Constriction Designs
Source: (Lyu et al., 2019)

The upstream design carries the highest safety risks among the rest though is the most preferred option (Islam & Murakami, 2021). The safety risks include, phreatic surface factor, liquefaction (when subjected to seismic events) in consideration of the limit for embankments raise per annum (Tyagunov et al., 2018). Phreatic surface factor occurs when the breadth of the beach and decant pond are below the minimum. Some of researchers have suggested that the number of embankment to < 15m per year, for stability purposes (Figure 2.2) (Tyagunov et al., 2018). Moreover, seismic events are still considered with an assumption of 1 in 100 years chance to occur (Adamo et al., 2021).

[image: ]
[bookmark: _Toc174614005][bookmark: _Toc174614008][bookmark: _Toc181202324]Figure 2.2: The Upstream TSF Outlining Phreatic Surfaces and Possible Failure Risk
Source: (Stefaniak et al., 2018)

The recent improvement of microseepage control employs appropriate hydrogeochemical considerations, and liner (materials with very low porousness that separates tailings from impervious barrier) for stability monitoring (Birle et al., 2022). Hydrogeochemical consideration include tailings mineralogy from parent rocks (Kalonji-Kabambi et al., 2020).Liners can either be natural (clay with permeability not less than  m/s) or man-made (with permeability not less than m/s) selected based on the price and historical performance (Eid et al., 2023). In mining operations, clay is widely used compared to synthetic liner, even though its performance may be affected by cracks, hydraulic deformations, consolidation, and even fissures (He et al., 2021).

[bookmark: _Toc181202267]2.2 Microseepage in TSF
Tailings from metallic origins such as Iron, Copper, Gold, Silver etc, are mostly originated from sulphide, and oxides rocks (Kalonji-Kabambi et al., 2020). In this case, consideration is from the greenstone belts which run through the study area. Greenstone belts compositions have minerals i.e., pyrite minerals known for their potential acid forming behaviour (Xie et al., 2018). Microseepage is a vertical discharge of tailings from the TSF to shallow and/or deep aquifers (Fortuna et al., 2021). The discharge is a result of physical and/or chemical processes which occur within the tailings that affects the base of the facility and allow vertical movement. The physical and chemical influences can further be facilitated by weathering conditions such as rainfall, wind speed and direction, sunlight, and temperature, to name just few. 

[bookmark: _Toc181202268]2.2.1 Physical Processes
Physical factors mainly include design flaw and/or construction oversite mostly during placement of the liner as well as embankment raise (Skinner et al., 2023). The design outlines several embankments raise, storage capacity, consideration of earthquakes or seismic events, weather conditions, and overflow spillway (Tschuschke et al., 2020). These attributes ensure that the facility is safe and free from pollution during operations and beyond (Lemos et al., 2020). The design also, accommodates lateral seepage using under drain system to ensure that all water from the process plant is careful collected and recycled back to the process plant for other processing purposes (Williams, 2021).

[bookmark: _Toc181202269]2.2.2 Chemical Processes
Chemical processes include tailings reactions which lead to acid mine drainage (AMD) and movement of heavy metals because of hydrogeochemical processes (Figure 2.3). The rocks once exposed from the earth are subjected to air and water that support hydrogeochemical reactions. 

[image: ]
[bookmark: _Toc174614006][bookmark: _Toc174614009][bookmark: _Toc181202325][bookmark: _Toc181202326]Figure 2.3: Conceptual Hydrogeochemical Processes at the TSF
Source: (Kalonji-Kabambi et al., 2020)

The by-products emanating from the chemical reactions affects soil and water sources when seep into the environment. Pyrites undergo a series of chemical reactions which produce AMD that supports heavy metals mobility (Xie et al., 2018). The reactions are favoured when water and oxygen are available in large quantities (Xie et al., 2018) . For example, pyrites oxidises to iron (II) and produce hydrogen ions () which act as an acidic condition for the dissolution of more metals as shown in Eq. 1 bellow. 

++[image: ] +  + ……. (1)

Furthermore, iron (II) is oxidised to iron (III), which further oxidises the pyrites to produce more hydrogen ions. 

+[image: ]+……………………….. (2)
++[image: ]++ ….... (3) 

The formation of more AMD facilitates heavy metals mobility from one point to another and results in the contamination of surface and underground water sources (Qiao et al., 2020). These hydrogeochemical activities produce dangerous complex contaminants that can seep into surface and underground water bodies when managed inappropriately (Kalonji-Kabambi et al., 2020). These reactions produce chemicals which then transported to various environmental compartments, resulting into surface and underground water contamination.
[bookmark: _Toc181202270]2.3 Effects of Microseepage
Microseepage increases acid levels (low pH) in soil and aquatic environment, leading to pollution of drinking water, fertility decrease in soil, and decrease in reproduction rate (Singh et al., 2020). Microseepage leads to dissociation of hazardous metallic minerals that ultimately affect human beings and other living organisms (Singh & Steinnes, 2020). Heavy metal mobility is effective under acidic condition (low pH) and travel far beyond mining operations downstream (Elmayel et al., 2020). The pollution potential of these minerals is significant with long-term negative environmental impacts (Netshiongolwe, 2018). Moreover, the oxidation of pyrite, ferric and ferrous ions produce various precipitates of salt by-products. The salts of sulphates and chlorides produced also affect soil and water quality.

The changes in oxidation and reduction conditions facilitate the movement of chalcophilic parameters such as Arsenic (As), Lead (Pb), and Iron (Fe) (Martı́nez-Alcalá & Bernal, 2020). These metals are common in acidic media and affect living organisms found in both soil and water environments. Mining activities exposes the rocks and consequently the reactive metals to react at specific conditions to form chemical complexes that are toxic to humans, aquatic life, and the environment (Liang et al., 2017).

[bookmark: _Toc181202271]2.4 Methods for Seepage Control
[bookmark: _Toc181202272]2.4.1 Darcy Law Method
Darcy’s law is used by geotechnical engineers, engineering geologists, hydrogeologists, and hydrologists in various contexts to determine underground flow rates within an earth dam for seepage control (Stephens et al., 2018). The method is applicable under the assumption of a two-dimensional flow of water movement at the porous medium within sand and clay soil materials of various permeability (Stephens et al., 2018). Its application is based on the amount and rate of water that mostly seep from unconventional fluid reservoirs (Yekeen et al., 2018). It assumes that seepage is inevitable and accommodated through under drain systems where the water from the TSF is collected at the pond and pumped back or recycled to the process plant (Condon et al., 2021). This method works mostly with lateral seepage control and does not provide a solution to microseepage within the TSF that leads to underground water pollution (Jiao et al., 2021) .

[bookmark: _Toc181202273]2.4.2 Finite Element Method (FEM)
The model forms part of numerical method and simulation that works on solving complex problems in small patterns or fine elements. Using FEM in microseepage control, drainage holes are used to create simulated curtain that prevents vertical seepage (Xu, 2019). FEM can also be combined with Darcy Law to improve vertical seepage management of the TSF in which calculation of pore pressure distributions are considered (Yang et al., 2022). The FEM provides knowledge on the amount of water discharged though the facility without effective control microseepage (Ouzaid et al., 2020).

[bookmark: _Toc181202274]2.4.3 Machine Learning (ML)
The ML methods have been applied in various disciplines such as science, business, medical, law etc where predictive modelling is used to obtain an optimal solution of various problems (Dinov, 2018). Examples of such methods include but not limited to artificial neural networks (ANN), genetic algorithm (GA), and swamp optimisation etc (Chiroma et al., 2017). The ANN mimics the coordination system of neurons; GA uses genes and chromosomes whereas swamp optimisation mimics the flock of beds or fish when in search of food, and water (Tayfur, 2017).

Machine learning approaches depend on the nature of the problem. For example, ML applied in solving various hydrological problems by various researchers in recent time (Fetisov & Menshikova, 2020). The ML provides solutions to complex problems based on inputs and output of the data using an objective function to produce series of models from which a perfect fit will be drawn. Machine learning technique has ability to process data with intricate relationships. The main requirement to attain best result in ML is that large quantity of dataset is needed to attain the best fit (Ren et al., 2018). In this discourse, there are sufficient facts that ML can effectively be employed to investigate environmental issues from TSF monitoring information. 

[bookmark: _Toc181202275]2.5 Research Gap
Studies show that design consideration of hydrogeochemical activities together with existing knowledge of TSF construction suffice to prevent underground water contamination (Chen et al., 2021). It then follows that the routine and long-term hydrometric monitoring data indicates that microseepage exists to the TSF (Fetisov & Menshikova, 2020). Despite all the engineering, hydrogeochemical, hydrological efforts and other scientific considerations, further research still needed.
This study investigates further into other factors and solutions thereof from the previous works that were conducted in an attempt to control seepage (Zhang et al., 2017). Investigation of geochemical activities whether affects clay liner performance or impervious layer in respect to season variations (Clemente & Huntsman, 2019) . The study will also outline the consideration of all input parameters under specific climate conditions, output parameters from monitoring boreholes along the downstream to produce predictive seepage modelling using available machine learning tools.

[bookmark: _Toc101386963]

[bookmark: _Toc181202276]CHAPTER THREE
[bookmark: _Toc181202277]RESEARCH METHODOLOGY
[bookmark: _Toc181202278]3.1 Research Design
This is an exploratory study where both primary and secondary data were used. Both datasets were used categorically as inputs and outputs variables. The information gathered at the TSF categorised as input whereas the measurement from TSF performance regarded as output data. The research includes study area, sampling data analysis and modelling.

[bookmark: _Toc181202279]3.2 Study Area
The research study focused on the GGM which is owned by subsidiary companies Anglo and Ashanti Gold to form Anglo Gold Ashanti. The area is located about 4.1 km from Geita District, South of Lake Victoria and approximately 91 km from Mwanza City in the South-Western direction (Figure 3.1). 

[image: ]
[bookmark: _Toc181202327]Figure 3.1: Modified Map of Tanzania that Shows Study Location and Sampling Points of the TSF
Source: (Google, 2022) (Reddit, 2023)
[bookmark: _Toc99045672]The GGM is one of the largest gold mining operations in Tanzania and East Africa. The operations include both multiple open pits of which some of them comprise underground portals or workings.

[bookmark: _Toc181202280]3.2.1 Geology and Hydrogeology
Geita Region is within the Greenstone Belt (GB) of the Tanzanian Archean Craton that constitutes three (3) supergroups of Dodoman, Nyanzian and Kavirondian (Sanislav et al., 2015) .  The GB contains six sections (Figure 3.2)  that include Sukumaland (SU), Nzega (NZ),  Shinyanga – Malita (SM), North – Mara (NM), Kilimafedha (KF) as well as  Iramba – Sekenke (IS) (Sanislav et al., 2018).
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[bookmark: _Toc181202328]Figure 3.2: Modified Map showing Greenstone belts and Sections of Rock
[bookmark: _Toc99045574]Source: (Kabete et al., 2012)
Geita lies on the Nyanzian Supergroup which is further divided in two groups i.e Lower Nyanzian (containing gabbro, basalt, and amphibolite minerals) and Upper Nyanzian (containing bended iron formation minerals) (Sanislav et al., 2018). GGM is found in SU which is also characterised by Geita Greenstone Belts (GGB) and is known to contain largest amount of gold deposits in Eastern Africa (Sanislav et al., 2015) . Hydrogeological features of GGM are characterised by the transportation of underground water recharge with ferricrete and saprock composition (Davies et al., 2014).  The aquifers are shallow and deep with both being colluvium and saprolite in nature. The ferricrete and saprock composition are known for their low permeability properties (Mather et al., 2019).

[bookmark: _Toc99045673][bookmark: _Toc181202281]3.2.2 Climate
The GGM contains bimodal climatic conditions with rain periods (0.5 to 245.5 mm) from October to February that tails until mid-May. The dry season starts in June and ends in September with maximum temperature range between 24.3ºC and 37.7ºC and minimum temperature range between 18.8ºC and 24.7ºC (Luhunga & Songoro, 2020). GGM humidity is high during wet season especially from November to April (up to 95.5%) and lower in dry season that ranges between June and October (up to 31.5%) (Luhunga & Songoro, 2020).
[bookmark: _Toc99045674]
[bookmark: _Toc181202282]3.2.3 Topography
GGM is at the mountains area that include Katoma (rises to 1583m above the sea level) and Nyamonge hills (rises to 1570m above the sea level).  Some of these mountains contain open pits, which are major sources of sulphide rocks that end up in the TSF (Figure 3.3).
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[bookmark: _Toc181202329]Figure 3.3: Modified Google Map of Topographical view for GGM
[bookmark: _Toc114298326][bookmark: _Toc99045575]Source: (Google, 2022)

[bookmark: _Toc181202283]3.3 Sampling and Sample Analysis 
Sampling was done two folds, which included automation and physical data collection. The automation data were collected from the  instrument that measures multiparameter of climate information of temperature, rainfall, wind speed and direction etc. Primary automation datasets were collected from June to December 2022 whereas secondary automation data from January 2016 to June 2022 were sought from the GGM management. Sampling data from  were recorded daily while water quality data were recorded monthly (Table 3.1).
[bookmark: _Toc174613952]


[bookmark: _Toc181202319]Table 3.1 Sample Parameters and Sampling Frequency
	Data Collection area
	Monitoring Requirement
	Frequency

	Compliance Monitoring

	
	Tailings weight (tons)
	Monthly

	Monitoring Boreholes
	Water Quality (mg/L)
	Monthly

	Performance Monitoring

	Climatic conditions
	Rainfall (mm)
	Daily

	
	Wind Speed (m/s)
	Daily


Source: (GGM, 2022)

Physical data collection involved tailings weight from processing facility and water quality from monitoring boreholes.  One (1) processing plant, one (1) weather station, and eleven (8) monitoring boreholes were selected as sampling sites around the TSF (Figure 3.4). Samples from processing plant and weather station were categorised as inputs whereas samples collected from monitoring boreholes were regarded as outputs.

[image: ]
[bookmark: _Toc181202330]Figure 3.4: Layout of Modified Google Map that Shows Sampling Points.
Source: (Google, 2022)
Samples from these boreholes were collected by the following standardised procedure to avoid sampling contamination. The procedure involved sampling bottles preparation, labelling and preliminary measurement of pH before taking the sample to the laboratory for further analysis. These processes (bottle decontamination, sample identification code, appropriate purging, and storage) are very crucial while errors are kept at an acceptable range (Figure 3.4). 

[image: ]
[bookmark: _Toc181202331]Figure 3.5: Weather Station (L) and pH/EC/DO Multiparameter instrument during Sampling Exercise at GGM (R).
Source: Field Survey (2022) 

The collected samples were stored based on the nature of the sample. Samples recorded at the electronic weather instrument were stored daily within a storage device embedded at the station (Figure 3.4). 

Samples from monitoring boreholes were collected and stored in clean labelled bottles (Figure 3.5). Samples were stored in cooler box at the temperature between 4º C - 5ºC and transported to SGS for laboratory analysis (Annex 1). Monitoring boreholes exclusively focus on pH, sulphate, nitrate, and TDS. The results were then delivered within 2-4 weeks after each round of 8 boreholes. Secondary datasets were provided by GGM through compliance performance monitoring and sample analysis were carried out at SGS and Lake Victoria Basin Water Board laboratories.

[image: ]
[bookmark: _Toc174614010][bookmark: _Toc181202332]Figure 3.6: The purging Process prior Water Sampling at Shallow Borehole Number 76 (Top left), the Climate Data Download at the Weather Station Instrument (Top right), the Sampling Bottles (Bottom left), borehole ID (Bottom centre) and   data processing box (Bottom right)
Source: Field Survey (2022) 
[bookmark: _Toc181202284]3.6 Quality Assurance and Quality Control
The samples for quality assurance and control (QA/QC) purposes were collected and treated in a similar manner as the real samples. The collected water samples for QA/QC were given unique codes and analysed at two different laboratories: Water Institute, a state-owned facility (i.e Ministry of Water (MoW) and SGS, which is a privately owned. The results from both laboratories were compared for QA/QC. 

[bookmark: _Toc181202285]3.7 Data Analysis
[bookmark: _Toc181202286]3.7.1 Descriptive Statistical Analysis
Descriptive statistics (range, mean and standard deviation) were used to summarise the findings. The seasonal variation of the study variables in respect to season variations are summarised using python software. The statistical significance of 0.05 at 95% confidence level was used. 

[bookmark: _Toc181202287]3.7.2 Modelling
The raw data from the analysis of the water, historical data from the GGM as well as weathering information are used to create a database. The database of samples which contain primary and secondary data then stored in excel in CSV (comma delimited) format further model analysis and investigation. 

The datasets were further analysed using ML to provide a model that predict and control discharge of chemicals from the facility. The processed data were used to predict a control mechanism of the microseepage at the TSF. The tailing weights from process plant combined with natural factors (such as wind speed and rainfalls) were used to create the input data in a model. The borehole observation at the downstream boreholes categorised as output variables. Using the concept of ML, the model was created to produce output under an environmental influence. The mathematical equation for the model with inputs and outputs functions is given by:
S = β₀ + β₁X₁ + β₂ X₁² +……………. +                                                         (3)
Where S is the seepage parameter, β₀ are β are different coefficients generated from the computer using the input parameters. The input data measured and quantified were split into two parts during modeling (Figure 3.6). 70% of the data will be used for training the model while the 30% will be used to test the model (Gholamy, Kreinovich, & Kosheleva, 2018).  

[image: ]
[bookmark: _Toc142376334][bookmark: _Toc174614011][bookmark: _Toc181202333]Figure 3.7: Conceptual Flow Illustration of Data Analytics and Modelling.
Source: (Gholamy et al., 2018)
The datasets stored as CSV file were used for data analytics and modelling in python software. Python software contains multiple specific libraries (small software package(s) for a particular task). In this project, several libraries such as numpy, pandas, os, seaborn, sklearn, matplotlib and TensorFlow were used. The findings from data analysis are presented in different outputs such as pictorials, graphs, plots, as well as tables. 


[bookmark: _Toc181202288]CHAPTER FOUR
[bookmark: _Toc181202289]RESULTS AND DISCUSSION
[bookmark: _Toc181202290]4.1 Geochemical Parameters in Boreholes
The descriptive statistics of the investigated parameters in the eight boreholes during the two seasons that include ranges, means and standard deviations (SD), are summarized in Table 4.1. 

[bookmark: _Toc174613953][bookmark: _Toc181202320]Table 4.1: Concentration Profiles of the four Parameters in the Wet and Dry Seasons
[image: ]* TZS 860: 2006 (TBS, 2006)

Table 4.1 show that the upstream boreholes, i.e., 77S and 77D had the lowest levels of NO3-, SO42-, and TDS, suggesting the existence of microseepage that affect the downstream boreholes. When compared to the discharge limits for the GGM in (Annex 2) and according to the Tanzania Bureau of Standards (TBS), various deductions were drawn as shown in the next subsections.
[bookmark: _Toc181202291]4.1.1 Sulphate Levels 
The monitoring boreholes along the downstream of the TSF indicates different ranges of sulphates concentration (Figure 4.1). 

[image: ]
[bookmark: _Toc174614012][bookmark: _Toc181202334]Figure 4.1 Sulphate levels in Selected Boreholes
Source: Study Findings

The shallow monitoring boreholes number 73 contains readings that range from 200 mg/L to 600 mg/ with normal distribution characteristics. Most of the SO42- results were within the TBS limits. Moreover, some had 600mg/L which are slightly above  the effluent discharge limit (500 mg/L) of the TBS. Shallow boreholes number 75 and 76 showed positive lognormal distribution with readings from 100 mg/L to 700 mg/L in borehole number 75 and from 200 mg/L to 800 mg/L in borehole number 76. The concentrations have increased up to 800 mg/L which are way above 500mg/L of the effluent discharge limit according to TBS. Furthermore, the shallow aquifers at boreholes no. 73, 75 and 76, the SO42- concentrations increased from South - North of the TSF.

Like in shallow boreholes, deep boreholes showed similar characteristics. Borehole number 73 has normal distribution whereas boreholes 75 and 76 positive lognormal distributions. Sulphate concentration level at borehole number 75 ranged from 1200 mg/L to 2400 mg/L whereas at borehole number 76 the values were relatively small (less than 8 mg/L). The concentrations of sulphates were relatively much higher at boreholes number 73, 75 and much lower at borehole number 76. The concentrations of sulphates were much lower in the shallow boreholes than in the deep boreholes and borehole number 76 had the lowest levels.  

[bookmark: _Toc181202292]4.1.2 pH
Shallow and deep boreholes number 73, 75 and 76 showed different values of pH (Figure 4.2). The pH observed to be between 5.6 - 7.0 in shallow borehole number 73, 6.2 - 7.6 in shallow borehole number 75 and 5.8 - 6.8 in shallow borehole number 76. The deep boreholes had pH levels as low as 5.75 - 7.75 in borehole number 73 from 4.5 -7.5 in borehole number 75 and from 6.8 - 8.0 in borehole number 76. The comparison between pH indicated that is below the TBS thresholds.
[image: ]
[bookmark: _Toc174614013][bookmark: _Toc181202335]Figure 4.2: pH Variations in Shallow and Deep Boreholes
Source: Study Findings

The pH levels for the boreholes showed both acidic and alkalinity properties. The very low acidity of 4.5 was recorded in deep borehole number 75 while the highest alkalinity of 8.0 was recorded in deep borehole number 76. 

[bookmark: _Toc181202293]4.1.3 Nitrate Level
The nitrate levels in both shallow and deep boreholes have shown quite unique concentration readings (Figure 4.3). Nitrate levels in all boreholes registered concentrations below 50 mg/L. The concentrations showed positive distribution for both boreholes at shallow as in deep. When compared to TBS limit of 20 mg/L there is slightly variation to few reading as the majority of results are within the thresholds.
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[bookmark: _Toc174614014][bookmark: _Toc181202336]Figure 4.3: Concentration of Nitrate in Selected Boreholes
Source: Study Findings

[bookmark: _Toc181202294]4.1.4 Total Dissolved Salts
Concentration of TDS from shallow to deep boreholes are multifaceted with high level of concentration readings (Figure 4.4). The TDS levels in shallow boreholes ranged 400 to 1200 mg/L in borehole number 73, 200 to 1200 mg/L in borehole number 75 and from 250 to 1750 mg/L in borehole number 76. The TDS levels in deep boreholes were between 2250 and 4000 mg/L in borehole number 73, 500 and 3000 mg/L in borehole number 75 and 180and 300 mg/L in borehole number 76. This showed significant increase of TDS in shallow boreholes from Southern part (borehole number 73) towards Northern part (borehole number 76) of the TSF while there is a decrease in deep boreholes from South - North (Figure 4.4).
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[bookmark: _Toc174614015][bookmark: _Toc181202337]Figure 4.4: TDS Levels in Selected Boreholes
Source: Study Findings

Deep boreholes number 73 and 75 showed significantly high values of TDS whereas deep borehole number 76 had TDS values below 500 mg/L. This suggests that in the shallow boreholes aquifer mixes as they move from South moving to North directions whereas in the deep boreholes there is an existence of an aquitard that separate deep borehole number 75 and 76. So, microseepage of TDS is much higher in all boreholes except in deep borehole number 76. There is no indication of underground aquifers movement from South all the way to Northern side as indicated by the concentration of TDS. The levels of sulphate and TDS concentrations showed significant variations compared to pH and nitrate. The TDS limit for TBS is not specified. Moreover, when TDS results compared to upstream boreholes the variation is quiet significant. These environmental data were used as output variables in the model. 
[bookmark: _Toc181202295]4.1.4 Distribution of Input Variables
The distribution of wind, rainfall and tailings weight were in various mean of averages. The consideration of these relationships occurs at an average of 6.7 m/s, 80 mm of rainfall and 96Mt of tailings weight (Figure 4.5).

[image: ]
[bookmark: _Toc174614016][bookmark: _Toc181202338]Figure 4.5: Distribution of Average Input Parameters which their Respective Mean.
Source: Study Findings

These values of input variables were used during the modelling with insignificant variation throughout the study. The observation of environmental status from the sample provides a general relationship of all variables. In principle, as tailings increase under the influence of a particular climate conditions, rock fragments undergo various chemical reactions. These reactions are due to different mineralogy that exists or originated from parent rocks. Chemical reactions are due to oxidations, reduction or redox in nature. GGM contains varieties of sulphides minerals which supports oxidation reactions due to unlimited supply of rainfall and water (Rybnikova & Rybnikov, 2019).
[bookmark: _Toc181202296]4.2 Correlation between Variables
The correlation of the variables outlines even more detailed relationships through a triangle heatmap analysis. The heatmap provides an existing relationship between independent (input) and dependent (output) variables, which ranged from negative to positive (Figure 4.6). 

The heatmap can categorize the correlation of the variables as extremely weak (0.0 – 0.19), weak (0.2 – 0.39), fair (0.4 – 0.59), strong (0.6 – 0.79), and very strong (0.8 – 1.0) (Thakur et al., 2018).The correlations between inputs (wind speed, tailings weight and rainfall) and output (Sulphate, pH, Nitrate and TDS) observed to range from weak to strong correlation. The most notable correlations are described between pH and Tailings weight at shallow boreholes no. 73 of 0.02 (regarded as very weak), Wind speed and TDS at shallow borehole no. 76 of 0.59 (regarded as moderate) as well as Tailings weight and TDS at shallow borehole no.73 of 0.83 (regarded as strong).  The behaviour portrayed at the heatmap outlines the fact that the relationship between these variables are non-linear. 

Generally, the sulphate, pH, TDS and nitrate (output variables) are correlated with in both shallow and deep boreholes with detailed descriptions from Section 4.2.1 – 4.2.4. The correlations are presented in graphs provide detailed relationships between variables.  



[image: ]
[bookmark: _Toc174614017][bookmark: _Toc181202339]Figure 4.6: Relationship Overview of Triangle Heat Map between selected Variables of an Environmental Interest
Source: Study Findings
[bookmark: _Toc101386975]
[bookmark: _Toc181202297]4.2.1 Correlation between Sulphate and Tailings Weight
Variable relationships between sulphate and tailings were observed in all shallow and deep boreholes. The shallow borehole number 73 indicated a gradual increase of sulphates as tailings increase while sulphates in shallow boreholes number 75 and 76 showed gradual decreases (Figure 4.7). In the deep boreholes number 73 the relationship was nonlinear with sharp increase of sulphate levels just above 97Mt. In the deep borehole number 75 sulphate levels increased somewhat linearly whereas at deep borehole number 76 there was no observable trend. 
[image: ]
[bookmark: _Toc174614018][bookmark: _Toc181202340]Figure 4.7: Relationships between Sulphate and Tailings Weight in Selected Boreholes
Source: Study Findings

Generally, an increase in tailings weight with the results sulphate results does not exhibit linear relationships along the downstream boreholes.

[bookmark: _Toc181202298]4.2.2 Correlation Between pH and Tailings Weight
The correlations between pH and tailings weight varied from nonlinear to relatively positive linearity for shallow and boreholes at deep aquifer (Figure 4.8). The relationship between tailings and pH was nonlinear in shallow borehole number 73 and positive linear in shallow boreholes number 75 and 76. In all the deep boreholes, the relationship was nonlinear. The results show non-linearity characteristics between pH and Tailings weight. An increase in tailings weight may increase or decrease the pH levels depending somewhat on other factors such as availability of oxygen or water and dilution of oxide rocks which do not support oxidation.
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[bookmark: _Toc174614019][bookmark: _Toc181202341]Figure 4.8: Relationships between pH and Tailings Weight in Selected Boreholes 
Source: Study Findings

[bookmark: _Toc181202299]4.2.3 Correlation of TDS and Tailings Weight
Likewise, to relationship between pH and tailings weight, the relationship between TDS and tailings weight was relatively linear in shallow boreholes number 73 and in all deep boreholes (Figure 4.9). However, the relationship was negatively correlated in shallow boreholes number 75 while nonlinear in shallow borehole number 76. 
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[bookmark: _Toc174614020][bookmark: _Toc181202342]Figure 4.9: Relationships of TDS and Tailings weight in Selected Boreholes 
Source: Study Findings

[bookmark: _Toc181202300]4.2.4 Correlation between Tailings and Nitrate
Nitrate shows concentration results which are significantly low as tailings weight increases. The concentration fluctuates and remains low for all boreholes except deep borehole number 75 with up 55.1mg/L (Figure 4.10). The changes of nitrate levels in the TSF could be due to other factor other than the parent rocks. GGM uses explosives during mining activities to breakdown hard rocks. The explosives are manufactured when ammonium nitrate (AN) ( ) mixed with fuel oil (FO) to form a combination AN-FO (Diaz & Hahn, 2020). The by-products of these explosive are also stored in the TSF.
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[bookmark: _Toc174614021][bookmark: _Toc181202343]Figure 4.10: Relationships between Nitrate and Tailings Weights in Selected Boreholes
Source: Study Findings

[bookmark: _Toc181202301]4.2.5 Correlation between Sulphate and Rainfall
Sulphate concentrations were determined during both each season (Figure 4.11). The sulphate concentrations in shallow borehole number 73 showed normal distribution while shallow boreholes number 75 and 76 the relationship of sulphate and rainfall was in a positive lognormal pattern. The deep boreholes number 73 and 75 have normal distribution behaviour whereas number 76 has positive lognormal behaviour.  The pattern concentrations of sulphates were higher during wet season than dry season for all boreholes.
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[bookmark: _Toc174614022][bookmark: _Toc181202344]Figure 4.11: Relationships between Sulphate and Rainfall Selected Boreholes
Source: Study Findings

[bookmark: _Toc181202302]4.2.6 Correlation Between pH and Rainfall
The relationship of pH levels and rainfall is related to the changes in seasons (Figure 4.12). The pH values in all boreholes were relatively higher (more basic) in wet season than in dry season. During the wet season the pH values were slightly higher as compared to dry season. This is indicative of the dilution effect. Similarly, during wet season the shallow borehole has low pH that increases to basic condition as depth increases. The boreholes number 76 (shallow and deep) had relatively higher pH (alkaline) throughout the year, probably due to limited supply of oxygen or acid forming substances from South to North. Furthermore, results suggest that, from Southern part to Northern part of the TSF pH changes from less acidic to alkaline medium. This also provide an information that as the pH becomes more alkaline with depth due to either limitation of oxygen supply or reactions with carbonaceous rocks (Dold, 2017). The pH is lower during dry season compared to wet season during for all boreholes. So, there is no direct relationship that suggests a linear pattern as pH changes from shallow borehole number 73 all the way towards borehole number 76. 
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[bookmark: _Toc174614023][bookmark: _Toc181202345]Figure 4.12: Relationships Between pH and Rainfall in Selected Boreholes. 
Source: Study Findings

In general, pH was observed to be between 5.4 – 6.5 at the lowest especially at shallow borehole no. 73. This observation is not as worse as expected considering the rate of tailings that has been poured annually for the past 7 years. pH reading are just below discharges limit within suggests that oxidation of pyrites is neutralized by rocks with basic characteristics such as rocks with high content of carbonates (Dold, 2017).The neutralizations are observed at shallow borehole number 75 as well as deep boreholes numbers 75 and 76. It is also observed that, pyrites oxidised more during wet season as compared to the dry season. 

In this context, appropriate water control at the TSF will significantly reduce pyrites oxidation. Strong recycling mechanism of water from the TSF to process plant during wet and dry season is paramount for oxidation control.

[bookmark: _Toc181202303]4.2.7 Correlation between TDS and Rainfall
Geita region experiences bimodal rain distribution annually. The rain provides sufficient to support various chemical equations. Seasonal variations between wet and dry season result into more TDS except for deep borehole number 76 (Figure 4.13). Variation can be observed at various boreholes along the downstream. Shallow borehole number 73 shows normal distribution while boreholes number 75 and 76 showed lognormal correlations. Concentrations of TDS were higher during wet season than during dry season except for deep borehole number 76.
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[bookmark: _Toc174614024]
[bookmark: _Toc181202346]Figure 4.13: Relationships between TDS and Rainfall in Selected Boreholes 
Source: Study Findings

All deep boreholes showed normal distribution with high concentrations of TDS except in deep borehole number 76. Significant decrease in microseepage behaviour at deep borehole number 76 suggests that geological features such as ferric rete and sap rock with low permeability lies beneath the TSF hence reduces microseepage at this area (Mather et al., 2019). In all boreholes high concentrations of TDS during wet season than dry season were observed.
[bookmark: _Toc181202304]4.2.8 Correlation between Nitrate and Rainfall
Nitrate levels in shallow boreholes showed lognormal distribution in both seasons (Figure 4.14). The nitrate levels in all deep boreholes were relatively low in both seasons. However, borehole number 76 had much higher nitrate values. 
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[bookmark: _Toc174614025][bookmark: _Toc181202347]Figure 4.14: Concentration of Nitrate and Rainfall in Selected Boreholes
Source: Study Findings

Nitrate concentration indicated that there is less seepage for both dry and wet season. This observation suggests that nitrates does not originated from natural source rather from deposition of the explosives remains used by GGM as a result of blasting activities. The remains of explosives materials are normally stored at the TSF (Kuykendall, 2023). In both cases neither shallow nor deep monitoring boreholes are significantly affected by nitrate concentration levels in relation to TBS limit.
 
[bookmark: _Toc181202305]4.2.9 Correlation between Sulphate and Wind Speed
Boreholes showed unique result pattern which for each borehole. There is clear relationship between wind speed and sulphate level in all boreholes (Figure 4.15). 
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[bookmark: _Toc174614026][bookmark: _Toc181202348]Figure 4.15: Relationships between Sulphate and Rainfall in Selected Boreholes 
Source: Study Findings

[bookmark: _Toc181202306]4.2.10 Correlation Between pH and Wind Speed 
Results from monitoring boreholes does not portray a direct relationship as indicated in Figure 4.16. The relationship of pH and wind speed in both shallow and deep boreholes was weak. 
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[bookmark: _Toc174614027][bookmark: _Toc181202349]Figure 4.16: Relationships between pH and Wind Speed in Selected Boreholes
Source: Study Findings

[bookmark: _Toc181202307]4.2.11 Correlation between TDS and Wind Speed
Results of TDS and wind speed outlines relationships that varies from positive to negative (Figure 4.17). Correlation values between TDS and Wind Speed for shallow boreholes no. 73, 75 and 76 are - 0.54, 0.43 and 0.59 whereas deep boreholes are -0.12, - 0.05 and - 0.15. Shallow borehole no. 76, shows a moderate correlation where deep boreholes are very weak with negative correlations (r2 < -0.05). This is contrast to the fact that wind speed can be a driving force towards oxygen supply to accelerate the oxidation of pyrites.
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[bookmark: _Toc174614028][bookmark: _Toc181202350]Figure 4.17: Relationships between TDS and Wind Speed in Selected Boreholes 
Source: Study Findings

[bookmark: _Toc181202308]4.2.12 Correlation between Nitrate and Wind Speed 
Figure 4.18 showed that nitrate is equivocally not affected by wind speed. All boreholes indicated low nitrate values except deep borehole number 75 (Figure 4.18). Triangle heatmap showed that the correlations between nitrate levels and wind speed in all boreholes were relatively weak.
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[bookmark: _Toc174614029][bookmark: _Toc181202351]Figure 4.18: Relationship between Nitrate and Wind Speed in Selected Boreholes
Source: Study Findings

Relationships between these variables show an interesting fact.  These facts are crucial in understanding the impacts of weather pattern towards tailings reactions, aquifers movement and directions. 

[bookmark: _Toc181202309]4.4 Seepage Modelling
[bookmark: _Toc181202310]4.4.1 Model Variables
Relationship between input (wind speed, rainfall, and tailings weight) and selected output (sulphate, pH, nitrate and TDS) variables have shown various information towards shallow and deep boreholes behaviour. Seepage prediction from these variables was used for modelling of pH, Sulphate and TDS. These parameters show significant level of concentration beyond baseline data. The input variables and the data from output variables in shallow and deep boreholes number 73 and 75 (except nitrate) were used in seepage modelling. The data from shallow and deep borehole number 76 were not used to avoid over fitting as the results were too small or dropped rapidly as tailings weight decreased. So, a total of 3 inputs variable and 10 output variables were used in seepage modelling, training, and testing. Since the number of input variables were fewer than the outputs, artificial neural networks were used for model creation, validation, and prediction of the seepage.

The model was operated under the assumption that:-
(i) Wind speed provides unlimited supply of oxygen to the tailings;
(ii) Rainfall considers water supply from the process plant;
(iii) Bootstrap samples originated from the same samples; and 
(iv) The average tailings deposition was 415,927.8 tonnages per month.

The input and output data for the model are outlined as part in a Table 4.3 and presented in wholly at Appendix 2, respectively.  The output features are the readings from the monitoring boreholes where number 1 indicates that there is microseepage and 0 no microseepage.
[bookmark: _Toc174613954][bookmark: _Toc181202321]Table 4.2: Some of the Values between Input and Output Parameters
[image: ]
Source: Study Findings

[bookmark: _Toc181202311]4.4.2 Model Training and Testing
Using the bootstrap re-sampling techniques and artificial neural network, data training and fitting was performed (Kline & Santos, 2012). The model showed that the fitting between training and test dataset gave an accuracy score of 91.32% (Figure 4.19). The result shows the efficiency bootstrap technique for model fitting when small number of datasets are used (Zhu, Gong, Xu, & He, 2017). The model was created from 150 cycles of complete datasets for training the model with an algorithm that are indicated below as an epoch.
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[bookmark: _Toc174614030][bookmark: _Toc181202352]Figure 4.19: Artificial Neural Network Model which Outlines Bootstrap Re-sampling results of the Training and Testing Data. 
Source: Study Findings

[bookmark: _Toc181202312]4.4.3 Microseepage Prediction
Prediction of microseepage from 55 observations is not that straight forward. The first four values that predicted seepage are shown in the Table 4.3. Seepage is indicated by value number 1 and 0 shows that there is no seepage. Values of 1 and 0 were taken from output readings that are more and less than the standard discharge limit. 

[bookmark: _Toc174613955][bookmark: _Toc181202322]Table 4.3: Seepage Prediction for the First Four Values 
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Source: Study Findings
The results from model loss shows that with more available datasets the model can be improved to provide more optimal solution for prediction (Figure 4.20)

[image: A graph with blue and orange lines

Description automatically generated]
[bookmark: _Toc174614031][bookmark: _Toc181202353]Figure 4.20: Model Loss which Outlines the Validation Prospect for Model Improvement
Source: Study Findings
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[bookmark: _Toc181202314]CONCLUSION AND RECOMMENDATIONS
[bookmark: _Toc181202315]5.1 Conclusion
Higher levels were observed during wet season as opposed to dry season for sulphate and TDS. During wet season’s pH varied from acidic to alkaline. Lower pH levels were observed in shallow borehole number 73. Nitrate exhibits low concentrations in all boreholes, indicating that they do not originate from tailings deposition or parent rock. These findings have evidenced the fact that water plays an important role towards sulphates and total dissolved salts formation at GGM TSF. The findings from the monitoring boreholes have indicated existence of microseepage. The model has enabled prediction of the seepage at 91.32% accuracy.

[bookmark: _Toc181202316]5.2 Recommendations
Further studies on mineralogical information and their percentage composition are needed. This will provide information to the neutrality behaviour of the TSF at the monitoring points. With increased acidity, rocks with more basic characteristics can be deposited to neutralize the acidity.

The model for microseepage control can be improved on the availability of more monitoring datasets from ongoing monitoring activities. More datasets for TSF monitoring are needed to obtain improved model in terms of training and fitting. Moreover, further research is also recommended to other TSFs in Tanzania using similar assumptions. The datasets from other TSFs with similar properties of that of GGM can be used to refine the model and improve prediction accuracy.
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Source: GGM Findings

	


[bookmark: _Toc149592605]Table A 5: Useful Libraries for this Research.
S/N
Library
Package
1
numpy
np
2
pandas
pd
3
os
os
4
matplotlib.pyplot
plt %matplotlib inline
5
tensorflow.keras.models  
Sequential
6
from tensorflow.keras.layers  
Dense


Source: Study Findings
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Month 2008 2009 2010 2011 2012 2013 2014

Jan 414,333          330,466         429,269         446,284         430,839           214,935           348,906          

Feb 410,344          221,179         366,722         318,588         372,913           190,487           372,536          

Mar 368,979          365,350         413,271         335,926         346,452           139,751           434,758          

Apr 330,062          373,084         388,310         338,782         400,898           359,726           428,834          

May 319,089          392,806         451,298         186,453         377,009           350,310           442,461          

Jun 384,301          394,021         411,671         102,031         402,674           324,013           387,337          

Jul 432,554          358,918         330,391         335,649         402,618           337,062           442,969          

Aug 369,830          403,404         368,562         411,904         374,281           436,198           394,456          

Sep 281,160          389,289         399,330         394,665         439,478           393,373           488,572          

Oct 285,880          410,310         456,279         180,581         344,815           355,181           409,070          

Nov 387,864          395,274         269,840         398,300         410,648           438,474           505,207          

Dec 283,356          405,463         408,583         414,076         448,658           500,938           530,699          

Total 4,267,752       4,439,562      4,693,527      3,863,240      4,751,283       4,040,448        5,185,805      

Dry Tonnes Deposited to TSF
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Month 2020 2021 2022

Jan 365,548                378,339                418,755               

Feb 491,648                494,660                413,364               

Mar 430,031                340,093                440,264               

Apr 469,460                479,443                500,737               

May 466,035                432,485                496,343               

Jun 495,246                488,274                452,952               

Jul 398,620                392,217                503,386               

Aug 495,824                470,039                494,222               

Sep 380,713                496,791                494,913               

Oct 448,675                386,395                420,860               

Nov 479,531                503,618                479,878               

Dec 502,233                577,722                578,221               

Total 5,423,564             5,440,073             5,693,896            

Dry Tonnes Deposited to TSF
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7

8 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L us/em

9 |Stn.Code  Description Collect Date/Time  Acidity  AlD AllT ALT AsD AsT caD cd-D cdT Chloride  CN-Fr oNT CN-WAD  Cond-F

10 2 2 02 02 01 01 200

11/GIW16  Seepage containm. pond, toe of Star&Comet ROM pad  27/Jan/2015 15:14 72 <0.20 218 032 <0001 <0001 897 <0002 <0002 32 E

12GW16  Seepage containm. pond, toe of Star&Comet ROM pad  25/Feb/2015 9:50 108 <0.20 50.6 <0.20 0.002 0.003 860 <0002 <0002 34 7]

13 GW16  Seepage containm. pond, toe of Star&Comet ROM pad  26/Mar/2015 12:57 5.4 <0.20 522 <020 <0001 <0001 780 <0002 <0002 30 7]

14 GIW16  Seepage containm. pond, toe of Star&Comet ROM pad _27/Apr/2015 11:37 9 <0.20 275 <020 <0001 <0001 512 <0002  <0.002 0397 5

15|G4W16  Seepage containm. pond, toe of Star&Comet ROM pad [31/May/2015 12:22] 142 3.62 <10 496 <0001 <0001 301 <0002 <0.002 79 22|

16 GW16  Seepage containm. pond, toe of Star&Comet ROM pad  02/Jul/2015 11:23 9 <0.20 455 <020 <0001 <0001 573 <0002  <0.002 a5 5

17 GAW16  Seepage containm. pond, toe of Star&Comet ROM pad  04/Jul/2015 11:37 2

18 G-W16  Seepage containm. pond, toe of Star&Comet ROM pad  31/Jul/2015 16:03 396 <0.20 352 0272 <0001  <0.001 54 <0002 <0002 a4 5

19 GW16  Seepage containm. pond, toe of Star&Comet ROM pad  21/5ep/2015 13:12 144 <0.20 374 <020 <0001 <0001 9902 <0002 <0.002 4 4

20 |GIW16  Seepage containm. pond, toe of Star&Comet ROM pad  22/Sep/2015 13:59

21|GIW16  Seepage containm. pond, toe of Star&Comet ROM pad  23/0ct/2015 16:55 9 00832 2 052 <0001 <0001 62 <0001  <0.001 11 4

22 |GIW16  Seepage containm. pond, toe of Star&Comet ROM pad  21/Nov/2015 15:04 252 0.026 216 0053 <0001  <0.001 690 <0001  <0.001 17 4

23|GIW16  Seepage containm. pond, toe of Star&Comet ROM pad  05/Jan/2016 15:58 774 428 <10 458 <0001 <0001 302 <0001 <0.001 82 11]

24|GIW16  Seepage containm. pond, toe of Star&Comet ROM pad  29/Jan/2016 18:26 142 4.08 <10 453 00503 0.0527 297 <0001 <0001 183 6

25|GIW16  Seepage containm. pond, toe of Star&Comet ROM pad  20/Feb/2016 12:00 285 0.0656 338 0224 <0001  <0.001 704 <0001 <0001 3.03 2

26 |GIW16  Seepage containm. pond, toe of Star&Comet ROM pad  10/Mar/2016 13:28 76 <0.004 2244 0058 <0001  <0.001 593 <0001  <0.001 166 2

27 |GIW16  Seepage containm. pond, toe of Star&Comet ROM pad  11/Apr/2016 11:13 114 <0.004 271 0151 <0001  <0.001 689 <0001  <0.001 186 3|

28 |GIW16  Seepage containm. pond, toe of Star&Comet ROM pad  13/May/2016 11:25 6 <0.02 25 <002 <0001 <0001 626 <0002  <0.002 245 3|

29 |GIW16  Seepage containm. pond, toe of Star&Comet ROM pad  12/Jun/2016 11:06 6 00187 588 00938 <0001 <0001 612 <0001  <0.001 215 4

30 /GW16 Seepage containm. pond, toe of Star&Comet ROM pad  31/Aug/2016 15:00 8.0 0.064 575 0095 <0001  <0.001 204 <0001 <0001 36 <0001 <0001 <0001 5

31/GIW16  Seepage containm. pond, toe of Star&Comet ROM pad 08/5ep/2016 120 0.079 96.6 024 <0001 <0001 171 <0001 <0001 129 7]

32/GW16  Seepage containm. pond, toe of Star&Comet ROM pad  25/Nov/2016 14:02 E
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