

BREAST CANCER DETECTION USING CONVOLUTIONAL NEURAL NETWORKS

FOR MRI IMAGES IN TANZANIA

A CASE OF MUHIMBILI NATIONAL HOSPITAL

RAMADHANI MRISHO HAMIS

A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc CS)

DEPARTMENT OF MATHEMATICS AND INFORMATION AND COMMUNICATION

TECHNOLOGY OF THE OPEN UNIVERSITY OF TANZANIA

2024

 ii

CERTIFICATION
The undersigned certifies that he has read and here by recommends for acceptance by The Open

University of Tanzania a dissertation entitled, Identification of Breast Cancer Using Convolutional

Neural Networks. In partial fulfilment of the requirements for the award of Degree of Master of

Science in Computer Science (MSc CS).

……………………………....

Dr. Rogers Bhalalusesa

Date ……………………………………

 iii

COPYRIGHT AND DECLARATION

COPYRIGHT

No part of this Dissertation may be reproduced, stored in any retrieval system, or transmitted in

any form by any means, electronic, mechanical, photocopying, recording or otherwise without

prior written permission of the author or The Open University of Tanzania in that behalf.

DECLARATION

I Ramadhani Mrisho Hamis declare that, the work presented in this dissertation is original. It has

never been presented to any other University or Institution. Where other people’s works have been

used, references have been provided. It is in this regard that I declare this work as originally mine.

It is hereby presented in partial fulfillment of the requirement for the Degree of Master of Science

in Computer Science (MSc CS).

……………………………....

Signature

Date ……………………………………

 iv

DEDICATION

I dedicate this study to my beloved wife Amina Msuya (Ummu Ayman) and my lovely sons

(Ayman & Aysar).

 v

ACKNOWLEDGEMENT

I express my gratitude to the all-powerful God, the originator of the cosmos and everything therein,

for His guidance throughout my life. His countless acts of grace, compassion, and favor from the

time of my birth until this very moment of finalizing this dissertation have consistently provided

me with encouragement and fortitude.

I would like to take this opportunity to express my deepest gratitude to the individuals who have

contributed immensely to the success of my master's thesis. This research would not have been

feasible without the invaluable support, guidance, and expertise they provided.

First and foremost, I would like to express my heartfelt thanks to my supervisor, Dr. Rogers

Bhalalusesa, for his unwavering support, helpful guidance, and timely feedback throughout this

research. His extensive knowledge and expertise in the field of machine leaning and computer

science have been instrumental in shaping the direction of this study. His encouragement and

motivation have been a great source of inspiration to me.

Second, I would also like to extend my gratitude to Dr. Lymo, the Head of Radiology at Muhimbili

National Hospital, for approving my research proposal and providing the necessary resources to

carry out this study. His support has been critical in ensuring the success of this research.

Third, I am grateful to Dr. Agnes Kavishe, Radiologist at Tumbi Hospital, for her valuable insights

and inputs in the study. Her expertise in the field of radiology has been immensely helpful in

shaping the research questions and identifying the appropriate methodology.

Fourth, I would like to express my appreciation for the guidance and support given by Mr. Quaras,

a Radiology Technician, and Dr. Irene, a Radiologist, both working at Muhimbili National

 vi

Hospital, in the process of collecting data. Their insights and direction have been vital in

guaranteeing the precision and trustworthiness of the gathered data.

Furthermore ,I would also like to thank Mr. Ussule for his support in acquiring permission for data

collection. His assistance has been invaluable in obtaining the necessary approvals.

Also, I extend my appreciation to the Ministry of Finance and Planning for providing financial

support for my study. Their support has been critical in ensuring that this research is carried out to

completion.

Lastly, I would like to acknowledge the management of Eastern Africa Statistical Training Centre

(EASTC) for granting me permission to pursue a master's degree in computer science. Their

support has been instrumental in providing me with the necessary knowledge and skills to

undertake this research.

In conclusion, I am deeply grateful to all the individuals who have contributed to the success of

this research. Their support, guidance, and expertise have been invaluable in shaping this study. I

am humbled by their generosity and assistance, and I can only hope to repay their kindness in my

future endeavors.

 vii

ABSTRACT

Breast cancer is a significant global health issue, and early detection is crucial for improving

outcomes. However, Tanzania faces challenges in addressing breast cancer, including a lack of

locally developed Convolutional Neural Network (CNN) models. This study aims to address this

gap by using CNNs with MRI images from Muhimbili National Hospital to identify breast cancer

cases.

The research employed an experimental study design using a dataset of 30 MRI images, with 8

malignant and 22 benign cases. To overcome data scarcity and overfitting risks, data augmentation

techniques were applied, resulting in an expanded dataset of 1419 images. This augmented dataset

provided a stronger foundation for training the CNN model tailored to Tanzania's context.

The CNN model, developed in Python, consisted of multiple layers designed for accurate breast

cancer identification. These layers included Conv2D and MaxPooling2D layers for feature capture,

Dense layers for classification, and Dropout layers to prevent overfitting. The model achieved an

accuracy of 96.4% and an F1 score of 96%, demonstrating its efficacy in identifying breast cancer

cases.

Despite the initial dataset's limitations, the research showcases the potential of CNNs and data

augmentation techniques for improving breast cancer detection. Further research with larger

datasets and diverse populations would be valuable for assessing the model's generalizability.

Overall, this study contributes to the field of breast cancer detection by offering an efficient

approach for early identification using CNNs for MRI images. Further research and validation

using larger datasets and diverse populations would be valuable to assess the generalizability and

scalability of the proposed model.

 viii

 TABLE OF CONTENTS

Certification .. ii

Copyright and Declaration ... iii

Dedication .. iv

Acknowledgement .. v

Abstract ... vii

Table of contents .. viii

List of figures ... xi

List of tables ... xiii

List of abbreviations .. xiv

CHAPTER ONE:INTRODUCTION .. 1

1.1 Background to the study ... 1

1.2 Problem Statement ... 6

1.3 General Objective ... 7

1.4 Specific Objectives ... 7

1.5 Research Questions .. 7

1.6 Significance of the Research .. 8

CHAPTER TWO:LITERATURE REVIEW ... 9

2.1 Overview .. 9

2.2 Breast cancer .. 9

2.3 Convolutional Neural Networks (CNN) .. 10

2.4 Magnetic Resonance Imaging (MRI) ... 13

2.5 Data augmentation .. 13

 ix

2.6 Research Gaps .. 23

2.7 The conceptual framework ... 24

CHAPTER THREE:RESEARCH METHODOLOGY .. 25

3.1 Overview .. 25

3.2 Study population and sample size .. 26

3.3 Area of study .. 26

3.4 Hardware and Software .. 27

3.5 Ethical Consideration ... 27

3.6 Research Design ... 27

3.7 Data Preprocessing ... 28

3.8 Image Augmentation .. 29

3.8.1 Image Rotation ... 29

3.8.2 Image Flipping ... 29

3.8.3 Image Shearing .. 30

3.8.4 Image Shifting .. 30

3.9 Model development process .. 34

3.9.1 First, Importing all required libraries into Jupiter notebook. .. 34

3.9.2 Second, loading image datasets into Jupiter notebook and encoding .. 35

3.9.3 Third, dividing the datasets into training, validation, and test sets. .. 37

3.9.4 Fourth, creating a Convolutional Neural Network (CNN) model employing diverse layers. 38

3.9.5 Fifth, Training and validation of the model ... 46

3.10 Evaluation Metrics ... 49

3.10.1 Additionally, Saving the model in HDF5 format using Kera’s save function. 52

3.10.2 Lastly, Integrating the model with a streamlit dashboard. .. 53

CHAPTER FOUR:RESEARCH FINDINDS AND DISCUSSION 58

 x

4.1 Overview .. 58

4.2 Discussion .. 58

4.3 Summary .. 63

4.3.1 Objective 1 .. 63

4.3.2 Objective 2 .. 64

4.3.3 Objective 3 .. 64

CHAPTER FIVE:CONCLUSION AND RECOMMENDATIONS 65

5.1 Overview .. 65

5.2 Conclusion .. 65

5.3 Limitation of the study ... 66

5.4 Recommendations .. 67

REFERENCES .. 68

APPENDICES ... 70

APPENDIX I : Published Paper .. 70

APPENDIX II : Source code of the developed model .. 76

APPENDIX III : Source code of the model’s dashboard made using streamlit 92

APPENDIX IV : Model’s dashboard .. 97

APPENDIX V : Source code of data augmentation techniques used 100

APPENDIX VI : Research clearance letter ... 101

APPENDIX VII : Data collection permit at MNH ... 103

APPENDIX VIII : Image datasets used to build the model .. 104

 xi

LIST OF FIGURES

Figure 2.1 Normal breast tissue and abnormal breast tissue (American Cancer Society, 2014) .. 10

Figure 2.2: The typical CNN architecture(Al-Zuhairi et el,2019) ... 11

Figure 2.3: The conceptual framework of the study (Ramadhani,2024). 24

Figure: 3.1 Developed CNN model architecture (Ramadhani,2024) .. 26

Figure 3.2: DICOM files format conversion to png format. ... 28

Figure 3.3: Data augmentation techniques (Ramadhani,2024). .. 29

Figure 3.4: Code snippet for data augmentation techniques used (Ramadhani,2024). 30

Figure 3.5: Benign sample Images after augmentations (Ramadhani,2024). 33

Figure 3.6: Augmented malignant sample images (Ramadhani,2024). .. 33

Figure 3.7: Python libraries imported to be used (Ramadhani,2024). .. 34

Figure 3.8: Image datasets loaded to Jupyter notebook from data directory consists of two

subdirectories (Benign and Malignant) (Ramadhani,2024). .. 36

Figure 3.9: Labeled images (0 for Benign images and 1 for Malignant) (Ramadhani,2024). 36

Figure 3.10: Splitting of the datasets into training, validation and testing variables

(Ramadhani,2024). .. 37

Figure 3.11: Splitting of the datasets into training, validation and testing

datasets(Ramadhani,2024). ... 37

Figure 3.12: Layers of a CNN model (Ramadhani,2024). .. 43

Figure 3.13: Model compilation (Ramadhani,2024). .. 43

Figure 3.14: Model training and validation process (Ramadhani,2024). 46

Figure 3.15: The last seven training progress of the model for each epoch (Ramadhani,2024). . 48

Figure 3.16: Code snippet of how the performance metrics was calculated (Ramadhani,2024) . 50

 xii

Figure 3.17: How the model was saved as HDF5 file (Ramadhani,2024). 52

Figure 3.18: A home page of an integrated model with streamlit (Ramadhani,2024). 54

Figure 3.19: Model's evaluation metrics (Ramadhani,2024). ... 55

Figure 3.20: Page for new prediction of a new MRI image (Ramadhani,2024). 55

Figure 3.21: Predicted outcome from a new MRI image, i.e., the probability outcome (0.999) and

the class of an MRI image (Malignant) (Ramadhani,2024). .. 56

Figure 3.22: Predicted outcome from a new MRI image, i.e., the probability outcome (0.00034)

and the class of an MRI image (Benign) (Ramadhani,2024). ... 56

Figure 3.23: About the model(Ramadhani,2024). .. 57

Figure 4.1: A plot of accuracy against epochs (Ramadhani,2024). .. 59

Figure 4.2: Plot of a loss against epochs (Ramadhani,2024). ... 60

 xiii

LIST OF TABLES

Table 2.1 Related works ... 14

Table 3.1 Model architecture summary .. 45

Table 5.1 Comparison of the accuracy of this research in relation to prior studies. 62

 xiv

LIST OF ABBREVIATIONS

ANN : Artificial Neural Network

AUC : Area Under the Curve

BC : Breast Cancer

CNN : Convolutional Neural Network

Conv2D : Convolution layer

DICOM : Digital Imaging and Communications in Medicine

HDF5 : Hierarchical Data Format 5

MaxPooling2D : Max pooling layer

MIAS : Mammography Image Analysis Society

MNH : Muhimbili National Hospital

MRI : Magnetic Resonance Imaging

WBCD : Wisconsin breast cancer database

WHO : World Health Organization

ReLU : Rectified Linear Unit

UCI : University of California, Irvine

 1

CHAPTER ONE

INTRODUCTION
1.1 Background to the study

Breast cancer is a form of cancer that originates from cells within the breast tissue. It occurs when

these cells undergo uncontrolled growth. Typically, breast cancer cells create a tumor that is

detectable on an x-ray or through palpation as a lump. The majority of breast cancers commence

in the milk-carrying ducts leading to the nipple (ductal cancers), while others may begin in the

glands responsible for producing breast milk (lobular cancers),(Al-Haija & Adebanjo, 2020).

Breast cancer is the second most common disease among Tanzanian women in terms of both

incidence and mortality, with an estimated 3037 new cases and 1303 deaths in 2018, and is

expected to increase by more than 120 percent in terms of both incidence and fatality by

2040(Breast Cancer Initiative, 2017). Based on recent statistical data from the World Health

Organization (WHO), approximately 23% of cancer cases and 14% of cancer-related deaths in

women are attributed to breast cancer, (Zhao et al., 2018). The timely identification of breast

cancer plays a crucial role in influencing the effectiveness of treatment, leading to a substantial

reduction in the burden and mortality associated with the disease, (Eroglu et al., 2021).

Breast cancer detection traditionally relied on various methods, including physical examination,

mammography, Magnetic Resonance Imaging(MRI) ,ultrasound, and biopsy. These methods have

been valuable in diagnosing breast cancer and have saved countless lives. However, they also have

limitations such as subjectivity, variability, and the need for expert interpretation,(Lu et al., 2019).

 2

Mammography is the most widely used screening tool for breast cancer detection. It involves

taking X-ray images of the breast tissue and analyzing them for abnormalities. While

mammography has been effective in detecting breast cancer, it may not be as accurate for women

with dense breast tissue or younger women. Ultrasound, on the other hand, utilizes sound waves

to create images of the breast and is often used in conjunction with mammography to provide a

more comprehensive evaluation.

Magnetic Resonance Imaging (MRI) is a medical imaging method that employs a powerful

magnetic field and radio waves to create precise images of the body's internal structures. It offers

a non-invasive means to visualize and evaluate different tissues and organs, assisting in the

diagnosis and surveillance of a broad spectrum of medical ailments.

In the process of an MRI scan, the patient reclines on a table, which is then positioned inside a

sizable cylindrical apparatus. Within this machine, a strong magnet generates a magnetic field

around the patient's body. Subsequently, radio waves are sent into the body, prompting the atoms

within to emit signals. The MRI machine captures these signals, and with the aid of a computer,

creates comprehensive, cross-sectional images that provide detailed visuals of the body's internal

structures.

MRI proves especially valuable in visualizing and examining soft tissues like the brain, spinal

cord, muscles, joints, and internal organs. It provides high-resolution images that can reveal

abnormalities, such as tumors, inflammation, or structural damage. MRI scans are commonly used

in various medical specialties, including neurology, orthopedics, cardiology, and oncology, to aid

in diagnosis, treatment planning, and monitoring of patients.

 3

MRI is considered a safe procedure without any known adverse effects; however, it may not be

appropriate for individuals with specific medical implants or devices that can be affected by

magnetic fields. The interpretation of MRI images requires expertise from radiologists or other

qualified healthcare professionals who can accurately analyze the images and provide a diagnosis

or assessment of the patient's condition,(Yurttakal et al., 2020).

Additionally, Ultrasound and biopsy techniques face several challenges in detecting breast cancer.

These challenges include the occurrence of false negatives and false positives, which can lead to

misdiagnosis and delayed treatment. The interpretation of ultrasound images and the accuracy of

biopsies are operator-dependent, making the expertise and experience of the operator critical. The

variability in lesion appearance poses difficulties in accurately distinguishing between benign and

malignant lesions based solely on ultrasound imaging. Furthermore, biopsies are invasive

procedures associated with potential risks and complications, deterring some patients from

undergoing the necessary diagnostic tests. Limited access to resources and the high cost of

equipment and specialized personnel further contribute to the challenges in implementing

ultrasound and biopsy techniques, particularly in resource-limited settings.

In recent years machine learning techniques have played a significant role in image classification

tasks, including breast cancer detection.

Before 2010, traditional approaches to image classification heavily relied on handcrafted feature

extraction methods for analysis and classification purposes. These approaches involved manually

designing features, such as texture, shape, or intensity, from the images. Subsequently,

conventional machine learning algorithms like support vector machines (SVM) or decision trees

were utilized to classify the extracted features. However, these approaches heavily relied on

domain knowledge and lacked the ability to learn complex patterns directly from raw images.

 4

From 2010 onwards, the rise of deep learning, particularly Convolutional Neural Networks

(CNNs), brought about a significant transformation in breast cancer detection. This breakthrough

technology enabled the automatic learning of complex patterns and structures from raw image

data, leading to remarkable advancements in the field. Unlike traditional approaches, CNNs

surpassed expectations by eliminating manual feature engineering requirements, making the

detection process more efficient and accurate.

Convolutional Neural Networks (CNNs) are a type of deep learning model that has proven to be

remarkably effective in tasks such as image recognition and computer vision, particularly when

dealing with visual data. CNNs revolutionized the field by introducing a data-driven approach,

allowing automatic feature extraction and end-to-end learning directly from raw images. In the

context of breast cancer detection, CNNs have been extensively applied due to their capability to

learn hierarchical representations from medical images. Researchers have developed various CNN

models for different aspects of breast cancer detection, including distinguishing between benign

and malignant lesions, identifying specific features like microcalcifications or masses, and

assessing the risk level. Compared to traditional feature-based methods, CNNs have demonstrated

significantly superior performance,(Zhao et al., 2018).

A convolutional neural network (CNN) consists of several interconnected layers, including

convolutional, pooling, and fully connected layers. The convolutional layers play a crucial role in

extracting pertinent features from the input data using a process called convolution. During

convolution, a set of learnable filters or kernels is applied to the input image, performing element-

wise multiplication and summation to generate feature maps. These feature maps accentuate

significant patterns or characteristics in the input image, such as edges, textures, or shapes.

 5

Pooling layers follow the convolutional layers and serve to down sample the feature maps,

reducing their spatial dimensionality while retaining the most salient information. This helps in

reducing the computational complexity of the model and making it more robust to variations in

the input.

The dense layers, also referred to as fully connected layers, have the role of performing the ultimate

classification or regression tasks. They receive the features extracted by the convolutional and

pooling layers and are trained to associate them with the desired output classes or values. These

layers enable the model to grasp intricate relationships within the data and make predictions based

on the acquired features.

Convolutional neural networks (CNNs) play a crucial role in breast cancer identification, utilizing

labeled data to adjust network weights iteratively through backpropagation. This process,

facilitated by optimization algorithms like stochastic gradient descent (SGD), aims to minimize

the difference between predicted and actual outputs. CNNs, due to their hierarchical and localized

architecture, excel in analyzing visual data. Automatic learning and extraction of relevant features

from raw images empower CNNs to perform tasks such as image classification, object detection,

image segmentation, and more (Lecun et al., 2015).

The significance of employing CNNs in breast cancer identification lies in their ability to recognize

patterns and features within medical images. In this context, the research problem gains relevance

as existing models often rely on secondary datasets from foreign sources, lacking the specificity

required for local healthcare systems. CNNs, with their capacity to adapt to distinct data

distributions and patient demographics, become indispensable tools in developing accurate breast

cancer prediction models tailored to the unique context of the target population. Consequently, this

research contributes to addressing the gap in locally trained breast cancer prediction models,

 6

emphasizing the importance of leveraging CNNs for enhanced diagnostic capabilities.,(Lecun et

al., 2015).

1.2 Problem Statement

Various studies have tackled the classification of breast tumors as benign or malignant, yet a

significant challenge persists: the absence of a breast cancer prediction model trained on local

datasets. Existing research often relies on secondary datasets from sources like the UCI machine

learning repository, primarily featuring data from foreign hospitals. This reliance on foreign data

poses a notable limitation, especially when implementing models within our country's healthcare

system, exacerbated by the disparities in data distribution and patient demographics between

foreign and local contexts, (Alanazi et al., 2021).

To bridge this gap, this study aims to develop a breast cancer prediction model tailored specifically

to our local datasets. By leveraging locally sourced data, we aim to mitigate the risk of

misclassification and enhance the model's relevance to our population's characteristics, ultimately

improving the accuracy and effectiveness of breast cancer detection within our healthcare system.

Furthermore, we employ data augmentation techniques to bolster our efforts, expanding the size

and diversity of our dataset. Through the generation of synthetic data points, we enhance the

model's robustness and its ability to generalize across different cases, addressing the challenge of

data scarcity and boosting the accuracy and reliability of breast cancer identification within our

community, (Shorten et al., 2019).

 7

1.3 General Objective

This study aims to develop a model that identifies breast cancer tumors using convolution neural

networks.

1.4 Specific Objectives

i. To extract features in magnetic resonance images (MRI) that are used in detecting breast

cancer using CNN.

ii. To develop a Python based CNN model which classifies between benign and malignant

breast tissues of our local breast images using a convolutional neural network algorithm.

iii. To evaluate the performance of the developed convolutional neural network (CNN)

model by employing performance metrics such as accuracy and F1 score.

1.5 Research Questions

i. How to extract features in magnetic resonance images (MRI) used to detect breast cancer

using CNN?

ii. How can a Python-based Convolutional Neural Network (CNN) model be developed to

accurately classify between benign and malignant breast tissues in local breast images,

employing a convolutional neural network algorithm?

iii. What is the performance of the developed convolutional neural network (CNN) model, as

assessed through performance metrics such as accuracy and F1 score?

 8

1.6 Significance of the Research

Early detection of breast cancer leads to effective treatment outcomes. Therefore, the design of a

model that can classify benign and malignant tumors in breast cancer would be valuable in the

academic world. This is because the study has been conducted using datasets (MRI images) from

our local hospital, Muhimbili National Hospital.

Moreover, the model developed in this research holds the promise of enhancing the accuracy of

tumor classification (malignant and benign) for pathologists. This was achieved by using data

specifically from our local hospital, Muhimbili National Hospital (MNH).

Additionally, this research aims to improve breast cancer detection in Tanzania by using

Convolutional Neural Network (CNN) models on local MRI breast images. The study used an

experimental design with 30 MRI images, with 8 malignant cases and 22 benign ones. Data

augmentation techniques were applied to expand the dataset to 1419 images, providing a more

robust foundation for the CNN model. The model, developed in Python, had multiple layers for

accurate identification, achieving an accuracy of 96.4% and an F1 score of 96%. The model

demonstrated robust feature extraction and classification capabilities, indicating its reliability and

potential for clinical application. Further research and validation using larger datasets and diverse

populations would be beneficial. This research contributes to the field of breast cancer detection

by offering an efficient approach for early identification using CNNs.

 9

CHAPTER TWO

2 LITERATURE REVIEW
2.1 Overview

In this chapter, literature review of the study is discussed. Firstly, the concept of breast cancer and

its early symptoms is presented. Secondly, Convolutional Neural networks algorithms in breast

cancer identification is discussed. Finally, the conceptual framework illustration and knowledge

gap has been presented.

2.2 Breast cancer

Breast cancer is a form of cancer that originates in the breast cells. It develops when irregular cells

within the breast undergo uncontrolled growth and division, giving rise to a tumor. These

cancerous cells have the potential to infiltrate neighboring tissues and metastasize to distant parts

of the body through the bloodstream or lymphatic system as shown in Figure 2.1.

Breast cancer is commonly identified by the existence of a new lump or growth, but it's crucial to

understand that most breast lumps are not cancerous. These growths can be categorized as either

benign or malignant. Benign tumors are non-cancerous, whereas malignant tumors are cancerous.

Moreover, the main differentiation between benign and malignant tumors lies in their shape:

benign tumors tend to have a round or oval shape, while malignant tumors display a somewhat

rounded shape with an irregular boundary. Furthermore, malignant masses appear brighter in

colour compared to the surrounding tissue (Ragab et al., 2019).

 10

Figure 2.1 Normal breast tissue and abnormal breast tissue (American Cancer Society, 2014)

2.3 Convolutional Neural Networks (CNN)

 Convolutional neural networks (CNN) belong to the class of deep learning neural networks. In

essence, CNN is a machine learning algorithm capable of taking an input image and assigning

importance (through learnable weights and biases) to various aspects or objects within the image,

allowing it to distinguish between them. CNN achieves this by extracting relevant features from

the images. A typical CNN structure comprises several components, including the input layer,

which handles grayscale images, and the output layer, responsible for binary or multi-class labels.

It also incorporates hidden layers, which consist of convolutional layers, ReLU (rectified linear

unit) layers, pooling layers, and a fully connected Neural Network as shown in Figure 2.2, (Ragab

et al., 2019).

Convolutional Layer: The convolutional layer applies a set of learnable filters (also known as

kernels) to the input image. Each filter convolves over the image, performing element-wise

multiplications and summing the results to produce a feature map. This layer helps in detecting

local patterns and features by capturing spatial information in the image.

Activation Layer: The activation layer brings non-linearity to the CNN by applying an activation

function, such as the Rectified Linear Unit (ReLU), to the feature map derived from the

 11

convolutional layer. This introduction of non-linearity allows the model to capture complex

relationships between features and enhance its ability to handle more intricate patterns in the data.

Pooling Layer: The pooling layer reduces the spatial dimensions of the feature maps through

down sampling. This down sampling is beneficial in controlling computational complexity and

mitigating overfitting. The widely used technique in pooling is max pooling, wherein a defined

window selects the maximum value as the representative value.

Fully Connected Layer: The role of the fully connected layer is to generate predictions based on

the extracted features. It takes the output from the previous layers and applies matrix multiplication

with learnable weights. This layer enables the model to learn complex combinations of features

and make high-level predictions.

Figure 2.2: The typical CNN architecture(Al-Zuhairi et el,2019)

Convolutional Neural Networks (CNNs) have showed to be highly effective and outperform other

classification algorithms. The unique architecture of CNNs makes them particularly suitable for

processing images and extracting relevant features.

CNNs are preferred over other classification algorithms in different image classification tasks due

to the following; -

 12

Convolutional Neural Networks (CNNs) excel at capturing spatial relationships: In contrast to

conventional machine learning algorithms such as Random Forest and Support Vector Machine

(SVM), CNNs take advantage of the spatial relationships present in images. They use

convolutional layers that apply filters to small portions of the image, allowing them to detect local

patterns and features. This capability is crucial for accurately classifying objects in images.

In a study conducted by Krizhevsky et al. (2012), CNNs demonstrated exceptional performance in

image classification tasks. The researchers trained a deep CNN architecture called AlexNet on the

ImageNet dataset, which consists of millions of labeled images from various categories. The

AlexNet achieved a significant reduction in error rate, surpassing traditional machine learning

algorithms. This study solidified the dominance of CNNs in image classification tasks (Krizhevsky

et al., 2012).

Moreover, CNNs possess the capability to automatically learn hierarchical features. This is a

significant advantage, as they can extract low-level features like edges, textures, and shapes

through multiple layers of convolution and pooling operations. These extracted low-level features

are then combined to create higher-level features that are more discriminative and useful for

accurate classification.

The hierarchical and localized nature of CNNs makes them particularly well-suited for analyzing

visual data. By automatically learning and extracting pertinent features from raw images, CNNs

gain the ability to undertake tasks like image classification, object detection, image segmentation,

and other related functions,(Lecun et al., 2015).

Furthermore, CNNs can leverage data augmentation techniques to enhance their performance.

Data augmentation entails the application of random transformations, such as rotations,

 13

translations, and flips, to the training images. By augmenting the training data, CNNs become

more resilient to variations in the input images, resulting in improved generalization and better

classification accuracy.

2.4 Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) is a medical imaging method that employs a powerful

magnetic field and radio waves to create detailed images of the body's internal structures. It is

extensively utilized in clinical settings to diagnose and monitor various medical conditions, such

as brain disorders, musculoskeletal injuries, and breast cancer.(Khooa et al., 1997).

2.5 Data augmentation

Data augmentation is a deep learning technique that involves applying various transformations to

the existing training dataset to artificially increase its size and diversity. The primary objective of

data augmentation is to enhance the model's generalization ability, robustness, and overall

performance by exposing it to a broader range of variations and patterns present in the training

data, (Wang & Perez, n.d.).

The most commonly augmentations techniques used are: -

Image flipping and rotation: Images can be horizontally or vertically flipped to create new

variations of the original image. Additionally, rotating images at different angles can provide

additional training samples. These techniques assist the model to recognize objects from different

orientations.

Image scaling and cropping: Scaling an image to different sizes or cropping it at various locations

can simulate different viewpoints or zoom levels. This allows the model to handle variations in

object size and position.

 14

Image translation: Shifting an image in different directions can create new samples with variations

in object location. This helps the model become more invariant to translation and improves its

ability to recognize objects in different positions.

Image shearing and skewing: Applying shearing or skewing transformations to images can

introduce deformations and changes in perspective. These transformations can enhance the model's

ability to handle distorted or perspective-shifted objects, (Shorten & Khoshgoftaar, 2019).

A list of previous works to identify breast cancer using convolutional neural networks conducted

by different scholars are summarized in Table 2.1.

Table: 2.1: Related works

RESEARCH TITLE DATA
ANALYSIS
TOOL

DATASETS
USED

EVALUATION RESEARCH GAP

Yurttakal, A.,
Akpolat, T., &
Arslan, A. (2020).
Detection of Breast
Cancer via Deep
Convolution Neural
Networks Using
MRI Images.
Journal of Medical
Imaging and Health
Informatics, 10(9),
2160-2166.

MATLAB
environment

Breast MRI
images of
200 Cases
among
them, 98 are
benign and
102
malignant
from
(Turkey)

sensitivity,
specificity,
precision, F1
Score, False
Negative Rate,
False Discovery
Rate, False
Positive Rate,
Negative
Predictive Value
and Classification
Accuracy,

The research gap in this
paper revolves around the
need for larger, more diverse
datasets and additional
validation studies to enhance
the generalizability and
reliability of the CNN model
for breast cancer detection
using MRI images.

Zuluaga-Gomez, A.,
Lopez, J. A., &
Ramirez, J. (2021).
A CNN-Based
Methodology for
Breast Cancer
Diagnosis Using
Thermal Images.
Journal of Medical
Imaging and Health
Informatics, 11(5),
1260-1267.

Python 1120
thermal
images from
DMR-IR
Database
(UK)

accuracy,
precision,
sensitivity, F1-
score and ROC-
AUC

Breast cancer characteristics
and patient populations can
vary significantly across
different regions and
healthcare systems.
Therefore, training a CNN
model on thermal images
from a single database may
not adequately capture the
variability present in real-
world clinical settings. To
address this gap, future
research could benefit from
incorporating thermal images
from multiple sources or

 15

conducting multi-center
studies to ensure the
robustness and applicability
of the developed
methodology across diverse
populations.

Alanazi, A.,
AlRubaian, M., &
AlShammari, R.
(2021). Boosting
Breast Cancer
Detection Using
Convolutional
Neural Network.
Journal of Medical
Imaging and Health
Informatics, 11(8),
2350-2356.

Python 275,000, 50
×50-pixel
RGB image
patches from
Kaggle

accuracy,
precision,
sensitivity

The research gap in the study
lies in the lack of specificity
regarding the origin and
representativeness of the
dataset, making it
challenging to assess the
extent to which the trained
CNN model can be
generalized to real-world
scenarios, particularly within
the context of the local
healthcare system where it is
intended to be applied.
Moreover, potential issues
related to data bias,
imbalance, and quality within
the Kaggle dataset could
impact the performance and
reliability of the trained
model. Thus, future research
could address these
limitations by utilizing more
curated and well-documented
datasets specifically tailored
to the target population,
thereby enhancing the
applicability and
effectiveness of the
developed CNN model for
breast cancer detection.

Ragab, Y., Attallah,
O., & El-Fishawy,
N. (2019). Breast
cancer detection
using deep
convolutional neural
networks and
Support Vector
Machines. IEEE
Access, 7, 53168-
53175.

MATLAB The digital
database for
screening
mammograp
hy (DDSM)
dataset
consists of
2,620 cases
and the
Curated
Breast
Imaging
Subset of
DDSM
(CBIS-

Accuracy,
sensitivity,
specificity Area
under the curve,
F1-score

The research gap in this
study lies in the reliance on
standardized datasets,
specifically the digital
database for screening
mammography (DDSM)
dataset and its subset, the
Curated Breast Imaging
Subset of DDSM (CBIS-
DDSM). While these datasets
are widely used in breast
cancer research, they may
not fully capture the diversity
of patient populations and
imaging practices

 16

DDSM)
datasets
contains 753
micro
calcification
cases and
891 mass
cases

encountered in clinical
settings. Therefore, there is a
need for research that utilizes
more diverse and
representative datasets,
possibly including data from
multiple healthcare
institutions or regions, to
enhance the generalizability
and applicability of deep
convolutional neural
networks (CNNs) and
Support Vector Machines
(SVMs) for breast cancer
detection across different
patient demographics and
imaging protocols

Fonseca, J. F.,
Carneiro, G., Aridas,
C. K., & Marcomini,
K. D. (2015).
Automatic Breast
Density
Classification Using
a Convolutional
Neural Network
Architecture Search
Procedure.

C
programming
language
using the
Open MP
library

94
mammogra
ms datasets
from two
medical
centers in
Lima, Peru

Accuracy The research gap in the study
conducted by Fonseca et al.
(2015) lies in the limited
scope of the dataset used for
training the convolutional
neural network (CNN)
model. While the study
utilizes mammogram datasets
from two medical centers in
Lima, Peru, totaling 94 cases,
the dataset may not fully
capture the diversity and
variability present in breast
cancer cases across different
populations. The lack of a
more comprehensive and
representative dataset from a
broader demographic range
hinders the generalizability
and applicability of the
developed CNN model.
Consequently, there is a need
for research that incorporates
larger and more diverse
datasets to improve the
accuracy and robustness of
breast density classification
models, ensuring their
effectiveness across various
patient populations and
healthcare settings.

Yue, Z., Fan, Y.,
Zhang, Y., Wang,
S., Li, Y., & Zhang,

 WBCD
dataset

Classification
accuracy

The research gap in Yue et
al.'s (2018) study lies in the
focus on utilizing the

 17

Z. (2018). Machine
Learning with
Applications in
Breast Cancer
Diagnosis and
Prognosis. Journal
of Healthcare
Engineering, 2018,
1-6.

Wisconsin Breast Cancer
Dataset (WBCD) for breast
cancer diagnosis and
prognosis without addressing
the potential limitations of
using a single dataset for
training and evaluation.
While classification accuracy
is reported as an outcome
measure, the study lacks
consideration of the dataset's
representativeness and
generalizability to diverse
patient populations.
Additionally, there is a need
for further investigation into
the robustness of the machine
learning models developed
using the WBCD dataset
when applied to real-world
clinical settings with varying
data distributions and patient
demographics. Therefore,
future research should aim to
validate the findings using
multiple datasets from
different sources to ensure
the reliability and
applicability of the
developed models in clinical
practice.

Eroğlu, O., Karacan,
A., Ceylan, H.,
Kocatürk, T., &
Arslan, A. (2021).
Convolutional
Neural Networks
based Classification
of Breast
Ultrasonography
Images by Hybrid
Method with respect
to Benign,
Malignant, and
Normal. Journal of
Healthcare
Engineering, 2021,
1-14.

MATLAB
2019b
environment

780 breast
ultrasound
images () in
png format
in which 437
are benign,
210
malignant,
133 normal
images
collected
from. This
data set was
obtained at
Behaye
hospital
(Europe
PMC site)

Accuracy, AUC The research gap in the paper
by Eroğlu et al. (2021) lies in
the limited scope of the
dataset used for training and
evaluation. While the study
employs breast ultrasound
images collected from a
single source, Behaye
Hospital, the dataset may not
fully capture the diversity
and variability present in
broader patient populations.
Additionally, the study does
not address potential biases
or limitations associated with
the specific hospital setting,
patient demographics, or
imaging protocols.
Therefore, there is a need for
further research that

 18

incorporates larger and more
diverse datasets, potentially
sourced from multiple
healthcare institutions, to
enhance the generalizability
and robustness of the
developed convolutional
neural network (CNN)
models for breast cancer
classification using
ultrasound images.

Al-Haija, A. M., &
Adebanjo, A. T.
(2020). Breast
Cancer Diagnosis in
Histopathological
Images using
Resnet-50
Convolutional
Neural Network.
Journal of Medical
Imaging and Health
Informatics, 10(12),
2875-2882.

Python 3.7 𝐵𝑟𝑒𝑎𝑘𝐻𝑖𝑠
dataset
composed
9,109
microscopic
images of
breast tumor
tissue
collected
from 82
patients, it
contains
2,480
benign and
5,429
malignant
samples
(700X460
pixels, 3-
channel
RGB, 8-bit
depth in
each
channel,
PNG
format)

accuracy The research gap in the study
by Al-Haija and Adebanjo
(2020) lies in the limited
diversity and
representativeness of the
dataset used for training the
breast cancer diagnosis
model. While the BreastHist
dataset consists of a
substantial number of
histopathological images, all
samples are collected from a
single source, potentially
leading to biases and
limitations in the model's
generalizability. The dataset's
exclusivity to a specific
patient population or
healthcare institution may
not adequately capture the
full spectrum of breast tumor
tissue variations, histological
characteristics, and patient
demographics present in
broader clinical settings.
Consequently, there is a need
for research that incorporates
more diverse and
comprehensive datasets
encompassing a wider range
of tumor types, tissue
structures, and patient
populations to enhance the
robustness and applicability
of breast cancer diagnosis
models trained using
convolutional neural
networks.

Zhao, H., Shi, J., Qi,
X., Wang, X., & Jia,

Python 122 digital
mammogra

Accuracy The research gap in Zhao et
al.'s (2018) paper lies in the

 19

J. (2018).
Classification of
Benign and
Malignant Breast
Mass in Digital
Mammograms with
Convolutional
Neural Networks.
ISICDM 2018:
Proceedings of the
2nd International
Symposium on
Image Computing
and Digital
Medicine, October
2018, pp. 47–50.

m images in
which 54
malignant
cases and 68
benign cases
downloaded
from the
Mammogra
phy Image
Analysis
Society
(MIAS)
database

limited size and diversity of
the dataset used for training
the convolutional neural
networks (CNNs) for
classifying benign and
malignant breast masses in
digital mammograms. While
the utilization of digital
mammogram images from
the Mammography Image
Analysis Society (MIAS)
database is a valid approach,
the dataset consists of only
122 images, with 54
classified as malignant and
68 as benign. This small
dataset size may not fully
capture the variability and
complexity of real-world
mammogram images,
potentially limiting the
generalizability and
robustness of the CNN
models developed.
Therefore, there is a need for
future research to explore
larger and more diverse
datasets to enhance the
accuracy and reliability of
breast cancer classification
using CNNs in digital
mammograms.

Lu, H., Zhang, Y.,
Cao, S., & Zhu, Q.
(2019). The
Classification of
Mammogram using
Convolutional
Neural Network
with Specific Image
Preprocessing for
Breast Cancer
Detection. Journal of
Medical Systems,
43(8), 234.

MATLAB
environment

A total of
2363
examinees
with BI-
RADS 0, 1,
2, 3, 4, and 5
were
collected
from a
teaching
hospital in
Taiwan and
9927 images
with
resolution
2294*1914
were
obtained

Accuracy,
sensitivity,
specificity, and
F1 score

The research gap in Lu et
al.'s (2019) study lies in the
absence of validation and
evaluation using diverse
datasets from multiple
healthcare settings or
geographical regions. While
the study employs a dataset
collected from a teaching
hospital in Taiwan, it is
essential to assess the
generalizability of the
developed convolutional
neural network (CNN) model
across different patient
populations and healthcare
systems. Validation using
datasets from various sources
would provide insights into

 20

the model's robustness and
effectiveness in different
clinical contexts, thus
enhancing its applicability
and reliability in real-world
breast cancer detection
scenarios.

Table 2.1 presents literature review on various studies related to detection and diagnosis of breast

cancer using deep learning techniques. The studies utilize different data analysis tools, datasets

and evaluation metrics.

Yurttakal et al.,(2020) conducted a study with the goal of early breast cancer detection through

the application of MRI images and deep convolutional neural networks (CNNs). They achieved

successful differentiation between benign and malignant tumors using a dataset of 200 breast MRI

images from Turkey.

Zuluaga-Gomez et al., (2021) focused on developing a CNN-based computer-aided diagnosis

system for breast cancer using thermal images. The study demonstrated the superiority of CNNs

over other techniques using a dataset of 1120 thermal images from the DMR-IR Database (UK).

However, the identified gap is the usage of datasets from abroad, suggesting the potential use of

local datasets.

Alanazi et al.,(2021) aimed to classify IDC-positive and negative cases and compared performance

with other machine learning models using Python. The research used a dataset of 275,000 RGB

image patches from Kaggle. The gap identified was the reliance on secondary datasets from

Kaggle, suggesting the exploration of local hospital datasets.

Ragab et al., (2019) examined the process of identifying masses and distinguishing between benign

and malignant tissues in mammograms by employing a combination of Deep Convolutional Neural

 21

Networks (DCNN) for extracting features and Support Vector Machine (SVM) for classification.

The experimentation was carried out using MATLAB. The study utilized data from two sources:

the digital database for screening mammography (DDSM) and the Curated Breast Imaging Subset

of DDSM (CBIS-DDSM).

Fonseca et al., (2015) focused on automatic breast density classification using a CNN architecture

search procedure in C programming language. The research employed 94 mammograms datasets

from two medical centers. However, the absence of a more comprehensive and representative

dataset from a broader demographic range undermines the generalizability and applicability of the

developed CNN model. Therefore, there is a need for further research that incorporates larger and

more diverse datasets to enhance the accuracy and robustness of breast density classification

models, ensuring their effectiveness across various patient populations and healthcare settings.

Yue et al.(2018) conducted a review of various ML techniques' applications in breast cancer

diagnosis and prognosis using the WBCD dataset. Additionally, there is a need for further

investigation into the robustness of the machine learning models developed using the WBCD

dataset when applied to real-world clinical settings with varying data distributions and patient

demographics. Therefore, future research should aim to validate the findings using multiple

datasets from different sources to ensure the reliability and applicability of the developed models

in clinical practice.

Eroğlu et al. (2021) developed a hybrid-based CNN system to classify breast cancer lesions into

three categories: benign, malignant, or normal. using MATLAB. The research utilized 780 breast

ultrasound images from Behaye hospital (Europe PMC site). However, the research gap in this

study lies in the limited scope of the dataset used for training and evaluation. While the study

employs breast ultrasound images collected from a single source, Behaye Hospital, the dataset may

 22

not fully capture the diversity and variability present in broader patient populations. Additionally,

the study does not address potential biases or limitations associated with the specific hospital

setting, patient demographics, or imaging protocols. Therefore, there is a need for further research

that incorporates larger and more diverse datasets, potentially sourced from multiple healthcare

institutions, to enhance the generalizability and robustness of the developed convolutional neural

network (CNN) models for breast cancer classification using ultrasound images.

Al-Haija & Adebanjo (2020) investigated breast cancer analysis in histopathological images using

the Resnet-50 CNN model in Python. The research employed the Breast Histology dataset.

Additionally, there is a need for research that incorporates more diverse and comprehensive

datasets encompassing a wider range of tumor types, tissue structures, and patient populations to

enhance the robustness and applicability of breast cancer diagnosis models trained using

convolutional neural networks.

Zhao et al., (2018) performed experimental comparisons in Python between CNN-based and SVM-

based classifiers to classify benign and malignant cases. The study used 122 digital mammogram

images from the MIAS database. The research gap in this study lies in the limited size and diversity

of the dataset used for training the convolutional neural networks (CNNs) for classifying benign

and malignant breast masses in digital mammograms. While the utilization of digital mammogram

images from the Mammography Image Analysis Society (MIAS) database is a valid approach, the

dataset consists of only 122 images, with 54 classified as malignant and 68 as benign. This small

dataset size may not fully capture the variability and complexity of real-world mammogram

images, potentially limiting the generalizability and robustness of the CNN models developed.

Lu et al. (2019) developed an aiding system for breast cancer detection and staging using

MATLAB. The study employed a dataset of 2363 examinees from a hospital in Taiwan. The

 23

research gap in this study lies in the absence of validation and evaluation using diverse datasets

from multiple healthcare settings or geographical regions. While the study employs a dataset

collected from a teaching hospital in Taiwan, it is essential to assess the generalizability of the

developed convolutional neural network (CNN) model across different patient populations and

healthcare systems. Validation using datasets from various sources would provide insights into the

model's robustness and effectiveness in different clinical contexts, thus enhancing its applicability

and reliability in real-world breast cancer detection scenarios.

2.6 Research Gaps

Several researches have been conducted to predict breast cancer. For example, Yurttakal et al.

(2020) developed a CNN model using pixel information in MATLAB, utilizing datasets from the

UCI machine learning repository with varying training and testing data sizes. However, many of

these studies relied on secondary data from foreign sources, such as the UCI machine learning

repository. In order to address this limitation and provide a more suitable model for breast cancer

identification, particularly in our country, this study aims to apply a CNN algorithm using Python.

The study will utilize secondary data in the form of MRI images from our local hospital,

specifically Muhimbili National Hospital (MNH). By using these datasets, the study aims to

accurately classify malignant and benign tumors, thereby improving breast cancer detection in our

country. Additionally, the implementation of the model has been carried out in Python, a widely

used programming language in the field of data science. Python is renowned for its extensive

collection of valuable libraries that cater to scientific computing and machine learning tasks.

 24

2.7 The conceptual framework

The conceptual framework illustrated in Figure 2.3 depicts the process of training a developed

Convolutional Neural Network (CNN) model to predict whether a tumor is benign or malignant

using data from the MNH Breast Cancer dataset. The dataset serves as the primary data source,

containing MRI images of breast tumors. These images undergo pre-processing, including

standardization, and resizing, before feature extraction. Features extracted from the images, such

as radius, perimeter, texture, area, smoothness, edges, and shapes of tumors, serve as independent

variables for training the CNN model. The developed CNN model learns from the training datasets

and is subsequently evaluated using validation datasets to assess its generalization to unseen data.

The dependent variable, the predicted result of whether the tumor is benign or malignant, is

determined by the CNN model, which is then used to make predictions on new data. This

framework outlines the essential steps in utilizing CNNs for breast cancer prediction, starting from

data collection to model development and deployment.

Figure 2.3: The conceptual framework of the study (Ramadhani,2024).

 25

CHAPTER THREE

3 RESEARCH METHODOLOGY
3.1 Overview

An experimental study design has been adopted. Experimental research design act as a de facto

research design in modelling machine learning problems, (Kamiri & Mariga, 2021).

This chapter provides a comprehensive overview of the CNN model developed as part of this

research, focusing on image processing and model architecture. The chapter begins with a detailed

explanation of the image augmentation methods and algorithm employed, shedding light on the

details of segmenting MRI images for accurate analysis. Additionally, the chapter delves into the

datasets utilized in the study, explaining the process of dataset selection, training, validation, and

testing. By thoroughly explaining the dataset handling procedures, readers gain insight into the

rigorous evaluation process employed to ensure the model's accuracy and reliability.

In Figure 3.1, a CNN model for breast cancer classification is illustrated. The model begins with

image pre-processing, where medical images of breast tissue undergo resizing, pixel intensity

normalization, and format conversion to prepare them for the deep learning model. Subsequently,

the pre-processed images are fed into the model for feature extraction, which involves capturing

numerical representations of crucial characteristics like shape, texture, and intensity. These

extracted features are then used to train a classification model, Once trained, the model can predict

the likelihood of breast tissue being benign or malignant when presented with new breast MRI

images.

 26

Figure: 3.1 Developed CNN model architecture (Ramadhani,2024)

3.2 Study population and sample size

The research sample comprises 30 MRI images from patients who received breast cancer

screenings at Muhimbili National Hospital (MNH).The patient's MRI images included in the study

were 8 for malignant and 22 for benign images. Furthermore, the images were augmented to 1419

images includes 719 benign and 700 malignant image using different augmentation techniques,

such as shearing, flipping, rotation, cropping, and shifting.

3.3 Area of study

Muhimbili National Hospital (MNH), located in Dar es salaam , serves as the primary research site

for this study. The hospital was chosen due to its significance as a leading healthcare institution in

the region, providing access to a substantial number of breast cancer cases. Conducting the

research in this setting ensures that the findings are relevant to the local context and can contribute

to improving breast cancer detection and treatment in the area.

 27

3.4 Hardware and Software

The model was developed using MacBook Pro 2019 which offers powerful specifications

including a 16-inch Retina display, 2.3 GHz 8-Core Intel Core i9 processor, AMD Radeon Pro

5500M graphics, and 16 GB of DDR4 memory, provides an ideal platform for developing CNN

model with Python, offering efficient processing, graphics rendering, and multitasking

capabilities.

3.5 Ethical Consideration

The study observed ethical issues and the images was anonymized and all necessary ethical

considerations was taken into considerations to ensure patient privacy and confidentiality.

Therefore, before conducting this study the permission was obtained from Research and

Publication Centre at Muhimbili National Hospital.

3.6 Research Design

In this study, an experimental research design was employed to address the gap in breast cancer

detection in Tanzania by leveraging Convolutional Neural Networks (CNNs) on local MRI breast

images sourced from Muhimbili National Hospital. The dataset initially comprised 30 MRI

images, with 8 malignant and 22 benign cases, acknowledging the challenge of data scarcity. To

mitigate this limitation and the risk of overfitting, data augmentation techniques such as rotation,

shifting, flipping, and shearing were applied using Python, resulting in a dataset expansion to 1419

images, encompassing 700 benign and 719 malignant cases. The developed CNN model,

implemented in Python, featured multiple layers including Conv2D layers for feature extraction,

MaxPooling2D layers for enhancing feature capture, and Dense layers for classification. The

dataset was divided into training (50%), validation (40%), and testing (10%) sets. The model

 28

demonstrated strong performance metrics, achieving an accuracy of 96.4% and an F1 score of

96%, indicating its efficacy in accurately identifying breast cancer cases.

3.7 Data Preprocessing

The study utilized a dataset consisting of 30 MRI images of breast tumors in DICOM (Digital

Imaging and Communications in Medicine) format. DICOM is a standard file format used for

storing, exchanging, and transmitting medical images and related information in the healthcare

industry. It is widely used in medical imaging modalities such as X-rays, MRIs, CT scans,

ultrasounds, and more. The 30 MRI images consisted of 8 malignant and 22 benign cases, then

these images were then converted to png format using HOROS software as shown in Figure 3.2.

Horos is a no-cost, openly accessible software designed for viewing medical images. It utilizes

OsiriXTM and various other open-source medical imaging libraries as its foundation.

Figure 3.2: DICOM files format conversion to png format.

 29

3.8 Image Augmentation

To enhance the dataset and increase its size, data augmentation techniques were applied. Various

augmentation methods such as shearing, cropping, rotation, flipping and shifting were used to

generate a total of 1419 MRI images as shown in Figure 3.3. The augmented dataset includes 700

malignant and 719 benign cases, providing a more extensive and diverse dataset for training and

evaluation, as shown in Figures 3.5 and 3.6.

Figure 3.3: Data augmentation techniques (Ramadhani,2024).

3.8.1 Image Rotation

This technique involves rotating an image by a certain angle. It assists the model become

more robust to variations in object orientations.

3.8.2 Image Flipping

Modifying an image by flipping it either horizontally or vertically is an uncomplicated

augmentation method, which effectively enhances the diversity of the dataset.

 30

3.8.3 Image Shearing

Image shearing involves shifting the pixels in a particular direction, giving the image a

skewed appearance.

3.8.4 Image Shifting

Shifting an image involves moving the pixels horizontally or vertically by a certain

distance. It can help the model become more robust to object translations or changes in

position.

Figure 3.4: Code snippet for data augmentation techniques used (Ramadhani,2024).

Figure 3.4 shows the code snippet detailing the data augmentation parameters utilized in this study

via the ImageDataGenerator class from the Keras library. The parameters and libraries employed

are explained, along with their respective purposes :-

 31

• TensorFlow: TensorFlow stands as an open-source platform for machine learning. In this

case, we are using the TensorFlow library's submodule tensorflow.keras for deep learning

tasks, particularly related to image processing and computer vision.

• ImageDataGenerator: This is a class from tensorflow.keras.preprocessing.image is

used for data augmentation and pre-processing of images. It permits the creation of

augmented renditions of images through the application of different changes like rotation,

scaling, flipping, and more. This technique is widely employed to enhance the variety and

amount of training data available.

• array_to_img and img_to_array: These functions, also from

tensorflow.keras.preprocessing.image, are used to convert between image data formats.

array_to_img converts a NumPy array representation of an image to a PIL Image object,

while img_to_array converts a PIL Image object to a NumPy array.

• load_img: This is another function from tensorflow.keras.preprocessing.image,

load_img is used to load an image file from a given path as a PIL Image object. It is often

used to read image files before further processing or augmentation.

• os: The os module is an intrinsic part of Python and serves the purpose of communicating

with the operating system. Its primary function is to handle various operations related to

files and directories, encompassing actions such as file listing, directory creation, and path

manipulation. In this code excerpt, it is probably utilized to interface with the file system

and gain access to image files.

• PIL: PIL (Python Imaging Library) is a popularly employed library utilized for accessing,

editing, and storing a wide range of image file formats. In this code, the PIL module is

imported to facilitate working with PIL Image objects.

 32

• Rotation_range: It specifies the range of random rotations that can be applied to the

images. In this case, the images were rotated up to 20 degrees in either clockwise or

counterclockwise direction.

• Width_shift_range and height_shift_range: These parameters define the extent of

random horizontal and vertical shifts that can be employed on the images. A value of 0.2

implies that the images can undergo horizontal and vertical shifting of up to 20% of the

image's width and height, respectively.

• Shear_range: It determines the range of random shearing transformations that can be

applied to the images. A shear transformation shifts the position of pixels along a certain

direction. In this study, the images were sheared by a maximum of 20% in any direction.

• Zoom_range: This parameter determines the extent of random zooming applicable to the

images. Zooming refers to altering the image's scale, and in this instance, the images were

subjected to a maximum zoom of 20%, either zoomed in or out.

• Horizontal_flip: It specifies whether random horizontal flips should be applied to the

images. Enabling this parameter means that some of the images were horizontally flipped.

• Fill_mode: It determines how to fill in the pixels that may appear after applying

transformations such as shifting or rotation. The 'nearest' mode fills in any empty areas

with the nearest available pixel value.

 33

Figure 3.5: Benign sample Images after augmentations (Ramadhani,2024).

Figure 3.6: Augmented malignant sample images (Ramadhani,2024).

 34

3.9 Model development process

The model was developed using Python 3.0 in Jupiter notebook 2.7. and the following were

the stages involved :-,

3.9.1 First, Importing all required libraries into Jupiter notebook.

Figure 3.7: Python libraries imported to be used (Ramadhani,2024).

Description of the imported libraries in Figure 3.7 are as follows: -

• cv2: OpenCV, an open-source computer vision library, is employed to perform

various tasks related to computer vision and image processing. Within this library,

the cv2 module offers functions that enable the reading, manipulation, and

visualization of images.

• matplotlib.pyplot (imported as plt): Matplotlib serves as a Python library used for

creating plots and visualizations. The pyplot module within Matplotlib offers a

straightforward interface to design and customize diverse types of plots and visual

elements.

• numpy (imported as np): NumPy is a library for numerical computing in Python. It

provides support for large, multi-dimensional arrays and a collection of

mathematical functions to operate on these arrays efficiently.

 35

• tensorflow.keras.models.Sequential: The Sequential class in the

tensorflow.keras.models module is a linear stack of layers. It is used to build a

sequential model, where each layer is added one after the other.

• tensorflow.keras.layers: This contains various types of layers that can be added to

a neural network model. The imported layers include Conv2D (convolutional

layer), MaxPooling2D (max pooling layer), Dense (fully connected layer), Flatten

(flattening layer), and Dropout (dropout layer).

• tensorflow.keras.regularizers: The tensorflow.keras.regularizers module provides

regularizers that can be used to apply penalties on layer parameters during model

optimization. Regularizers aid in mitigating overfitting by introducing an additional

term to the loss function, which serves as a penalty.

• tensorflow.keras.callbacks.EarlyStopping: The EarlyStopping callback is used to

stop training the model if a monitored quantity (e.g., validation loss) does not

improve for a specified number of epochs. This prevents overfitting and allows

early termination of training.

3.9.2 Second, loading image datasets into Jupiter notebook and encoding

This stage was accomplished using a TensorFlow library known as

image_datasets_from_directory. This library helps to load image datasets that are in

subfolders with two class (in this study was malignant and benign) and provide labels to

the existing class where by one class labeled as 0 and another class labeled as 1. Also, the

library supports the images in jpeg, png, bmp, gif formats and reshapes them into the size

 36

of 256X256 pixels and divide the datasets into 32 batch size as shown in Figure 4.7 and

Figure 4.8.

Figure 3.8: Image datasets loaded to Jupyter notebook from data directory consists of two
subdirectories (Benign and Malignant) (Ramadhani,2024).

Figure 3.9: Labeled images (0 for Benign images and 1 for Malignant) (Ramadhani,2024).

 37

3.9.3 Third, dividing the datasets into training, validation, and test sets.

The datasets were divided into three parts: training, validation, and testing. Specifically,

50% of the images were allocated for training, 40% for validation, and the remaining 10%

for testing purposes Additionally, dividing the datasets into training, validation, and test

sets serves multiple purposes. Firstly, it helps in assessing the performance of the model

during training by providing a separate set of data for validation, which aids in tuning

hyperparameters and preventing overfitting. Secondly, the test set allows for the final

evaluation of the model's performance on unseen data, providing an unbiased assessment

of its generalization ability. By allocating 50% of the images for training, 40% for

validation, and the remaining 10% for testing purposes, a balanced distribution ensures

robust training, validation, and evaluation processes, as depicted in Figures 3.10 and 3.11.

Figure 3.10: Splitting of the datasets into training, validation and testing variables
(Ramadhani,2024).

Figure 3.11: Splitting of the datasets into training, validation and testing
datasets(Ramadhani,2024).

 38

3.9.4 Fourth, creating a Convolutional Neural Network (CNN) model employing diverse layers.

The developed CNN model consists of the following layers: -

1. A Conv2D layer comprising 16 filters, each with a kernel size of 3x3, and utilized the

ReLU activation function.

• Conv2D: This layer performs the convolution operation, which involves

sliding a small filter (also known as a kernel) over the input image to extract

local features. The "2D" in Conv2D refers to the fact that this layer operates on

two-dimensional data, such as images. Each filter in the layer learns to detect

specific patterns or features within the input.

• 16 filters: The Conv2D layer comprises 16 individual filters. Each filter is a

small matrix of weights that is convolved with the input image. Having

multiple filters allows the layer to learn and detect various features

simultaneously. In this case, each filter would learn different patterns or feature

representations.

• Kernel size: The size of the kernel dictates the filter's spatial dimensions. In

this scenario, the kernel size is 3x3, implying that each filter is represented as

a 3x3 matrix. When performing the convolution operation, this filter is

employed on a 3x3 section of the input image sequentially. The filter moves

across the image, calculating the dot product between the filter's weights and

the corresponding values of the input pixels.

• Rectified Linear Unit (ReLU) activation function: Once the convolution

operation is performed, the output of each filter undergoes an element-wise

application of an activation function. ReLU is a popular activation function

 39

commonly used in CNNs. It introduces non-linearity to the network by setting

all negative values to zero and leaving positive values unchanged. Thus,

mathematically it can be written as , ReLU(x) = max (0, x). ReLU activation

helps the neural network to learn complex, non-linear relationships between

features and enhances the network's ability to generalize and learn more

discriminative features.

2. A 2x2 MaxPooling2D layer is used. Another Conv2D layer with 32 filters and a

subsequent MaxPooling2D layer were employed, enhancing the network's ability to

extract relevant features.

• The MaxPooling2D layer, utilizing a 2x2 pool size is a common operation used

in convolutional neural networks (CNNs) to down sample the input and reduce

the spatial dimensions. The pool size determines the size of the pooling

window.

• This layer takes the output from the previous Conv2D layer and performs max

pooling with a pool size of 2x2. The layer divides the input into non-

overlapping 2x2 regions and picks the maximum value within each region. This

operation reduces the spatial dimensions by a factor of two (2), effectively down

sampling the feature maps. The purpose of this layer is to capture the most

salient features while reducing computational complexity. It enhances the

network's ability to generalize and extract relevant features by emphasizing the

most prominent features within each region.

 40

• Conv2D (32 filters): After the MaxPooling2D layer, another Conv2D layer with

32 filters is employed. This layer applies 32 filters to the input feature maps,

extracting more complex and higher-level qualities from the previous layer's

output. The filters in this layer learn to recognize and detect specific patterns or

structures within the feature maps. The use of additional filters increases the

network's capacity to learn and represent a wider range of features.

• The combination of Conv2D layers and MaxPooling2D layers in this sequence

allows the network to learn and extract increasingly complex and meaningful

features from the input data. The Conv2D layers identify local patterns, edges,

and textures, while the MaxPooling2D layers down sample the feature maps,

maintaining the most important information and reducing computational

complexity. This architecture helps the network to focus on relevant features,

improving its ability to extract and represent the relevant characteristics of the

input data.

3. The architecture further includes a Conv2D layer consists of 16 filters, a

MaxPooling2D layer, and a Flatten layer that convert the output into a one-dimensional

array.

• Flatten: This layer is used to convert the multidimensional feature maps into a

one-dimensional array. It "flattens" the spatial dimensions, resulting in a long

vector representation. This layer transforms the output of the previous layer into

a format suitable for feeding into the subsequent fully connected layers.

 41

4. The model continued with a Dense layer of 256 units and an activation function(ReLU),

followed by a Dropout layer with a dropout rate of 0.2.

• Dense (256 units, ReLU activation): The Dense layer is a fully connected layer where

each neuron is connected to every neuron in the previous layer. The layer has 256 units,

which means it produces an output of shape (None, 256). The ReLU activation function

is applied to the output of this layer, which introduces non-linearity into the network.

ReLU activation sets all negative values to zero and keeps the positive values

unchanged. This activation function enables the introduction of non-linear

characteristics, enabling the neural network to grasp intricate connections among

features.

• Dropout (dropout rate of 0.2): The Dropout layer was used to mitigate

overfitting, which is a common issue in deep learning models. During training,

Dropout is a technique that introduces randomness by randomly deactivating a

portion of input units during each update in a neural network. By doing so, it

effectively simulates the dropout of certain neurons. The primary purpose of

this approach is to encourage the network to develop more resilient and general

representations by avoiding overreliance on specific sets of features. In this

scenario, the Dropout layer is placed after the Dense layer, and it operates with

a dropout rate of 0.2, implying that 20% of the input units will be randomly

zeroed out while the model is being trained.

• By adding the Dense layer with ReLU activation and the Dropout layer, the

model introduces additional non-linearity and regularization techniques to

 42

improve its generalization ability and reduce overfitting. The Dense layer with

ReLU activation enables the network to learn more complex representations,

and the Dropout layer helps in preventing the model from memorizing the

training data too closely, leading to better performance on unseen data.

5. Lastly, a Dense layer with 1 unit and a sigmoid activation function facilitated binary

classification.

• The final layer of the model architecture consists of a Dense layer with 1 unit and

a sigmoid activation function. This layer facilitates binary classification, indicating

the model's output is a probability value between 0 and 1.

• Dense (1-unit, sigmoid activation): The Dense layer has 1 unit, representing the

modal’s final output. In binary classification tasks, this outputs unit typically

indicates the probability of fitting to one of the two classes. The sigmoid activation

function, also known as the logistic function, is applied to the output of this layer.

It squashes the output values between 0 and 1, interpreting them as probabilities.

The sigmoid activation is commonly used in binary classification problems as it

allows the model to provide a probability estimate for the positive class.

• By employing a Dense layer with a single unit and applying the sigmoid activation

function as the final layer, the model is configured to perform binary classification.

The output value, after passing through the sigmoid activation, can be interpreted

as the predicted probability of belonging to the positive class. Based on a chosen

threshold (e.g., 0.5), the model can make a binary decision by classifying samples

with probabilities above the limit as positive and those below as negative.

 43

Figure 3.12: Layers of a CNN model (Ramadhani,2024).

After adding layers to a model, the model in then compiled so that it can further be

trained as shown in Figure 3.12.

Figure 3.13: Model compilation (Ramadhani,2024).

Figure 3.13 shows the parameters used for compilation of the model and the following is

the description of the parameters used.,

• Optimizer: 'adam'

The Adam optimizer is a popular optimization algorithm commonly used in deep

learning. It combines the advantages of two other optimization methods, AdaGrad and

RMSProp. Adam adapts the learning rate for each parameter based on their previous

gradients, making it effective in training models with large and complex datasets. The

'adam' argument specifies the use of this optimizer.

 44

• Loss Function: tf.losses.BinaryCrossentropy()

The BinaryCrossentropy loss function is suitable for binary classification problems,

where the task is to predict between two classes. It measures the difference between the

predicted probabilities and the true labels. The tf.losses.BinaryCrossentropy() function

calculates the loss by comparing the predicted values with the true labels. The goal of

training the model is to minimize this loss function (errors).

• Metrics: ['accuracy']

The 'accuracy' metric is commonly used to evaluate the performance of classification

models. It calculates the accuracy of the model's predictions, which is the ratio of

correctly predicted samples to the total number of samples. By specifying ['accuracy'],

the model will track and report the accuracy metric during training and evaluation.

 When the model is compiled with these configurations, it is ready for training using

the specified optimizer, loss function, and metrics.

 45

Table 3.1: The model architecture summary

Table 3.1 provides architecture summary of a Convolutional Neural Network (CNN) model with

specific layer types, output shapes, and the number of parameters for each layer. The model

consists of several convolutional and max-pooling layers, followed by a flatten layer and two dense

layers with dropout.

The first convolutional layer (Conv2D) outputs feature maps of size (None, 254, 254, 16) and has

448 trainable parameters. Subsequently, a max-pooling layer (MaxPooling2D) reduces the spatial

dimensions to (None, 127, 127, 16) with no additional parameters.

 46

The second convolutional layer (Conv2D_1) generates feature maps of size (None, 127, 125, 32)

with 4640 trainable parameters. Another max-pooling layer (max_pooling2d_1) reduces the

dimensions to (None, 62, 62, 32) without any parameters.

The third convolutional layer (conv2d_2) generates feature maps of size (None, 60, 60, 16) with

4624 trainable parameters. A max-pooling layer (max_pooling2d_2) further reduces the

dimensions to (None, 30, 30, 16) with no parameters.

Then, a flatten layer converts the 3D feature maps into a 1D vector of size (None, 14400) before

passing the data to the first dense layer (Dense). The dense layer outputs (None, 256) neurons with

3,686,656 trainable parameters. A dropout layer follows the dense layer, which acts as a

regularization technique and has no additional parameters.

Finally, the last dense layer (dense_1) produces a single output neuron, aiming for binary

classification (None, 1) with 257 trainable parameters.

The total number of model’s parameters is 3,696,625, all of which are trainable, as there are no

non-trainable parameters in this architecture.

3.9.5 Fifth, Training and validation of the model

The model was trained using fit() function, with some additional parameters and a callback for

early stopping as shown in Figure 3.14.

Figure 3.14: Model training and validation process (Ramadhani,2024).

 47

 Figure 3.14 shows the code snippet of the model’s training process. The following is an

explanation of what each component does:-

• Early Stopping callback:

The Early Stopping callback is used to monitor a specified metric during training and

stop the training process if the metric does not improve after a certain number of

epochs. In this case, the monitored metric is 'val_loss', which refers to the validation

loss. The patience parameter was set to 5, indicating that training has to stop if the

validation loss does not improve for 5 consecutive epochs.

• Training data: train

The 'train' variable represents the training data that has been used to train the model. It

has been in the form of input features and corresponding target labels.

• Number of epochs: epochs=30

The 'epochs' parameter specifies the number of times the model has iterate over the

entire training dataset during training. In this case, the model has been trained for 30

epochs. This value was chosen after several testing of different numbers of epochs.

• Validation data: validation_data=val

The 'val' variable represents the validation data that has been used to evaluate the

model's performance during training. It should be in the same format as the training

data, with input features and corresponding target labels.

 48

• Callbacks: callbacks=[early_stop]

The 'callbacks' parameter allows to specify a list of callbacks to apply during training.

In this case, the early_stop is included to monitor the validation loss and stop training

if the metric does not improve for five (5) successive epochs.

By calling model.fit () with these parameters and the specified data, the model will be trained using

the training data, evaluated on the validation data, and the training will stop early if the model’s

validation loss does not improve for 5 successive epochs. The training history will be stored in the

'hist' variable, which can be used for further analysis or visualization of the training progress as

shown in Figure 3.15.

Figure 3.15: The last seven training progress of the model for each epoch (Ramadhani,2024).

 49

3.10 Evaluation Metrics

Using Accuracy and F1 score as evaluation metrics in a breast cancer prediction model is essential

for a comprehensive assessment of its performance. Accuracy offers an overall measure of correct

predictions, providing insight into the model's correctness in classifying both malignant and benign

cases. However, in the context of breast cancer prediction where class imbalances can occur, F1

score assumes critical importance by considering both precision and recall. It ensures that the

model not only accurately classifies cases but also effectively captures positive instances,

mitigating the risks associated with false negatives and false positives. By combining Accuracy

and F1 score, the evaluation process gains a more holistic view of the model's ability to balance

precise identification of cancer cases while minimizing misclassifications, thereby enhancing the

model's clinical relevance and aiding informed medical decisions.

The model was evaluated using the following performance metrics:

• Accuracy: Accuracy measures the overall accuracy of a model's predictions by

determining the percentage of correctly classified instances among all instances. In

this study the developed CNN model achieved an accuracy of 96.4%, indicating

that it correctly classified 96.40% of the MRI images. This high accuracy score

suggests that the model performs well in distinguishing between different classes.

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 	!"#$%&	()	*(&&%*+	,&%-.*+.(/0
1(+23	/"#$%&	()	,&%-.*+.(/0

𝑥100 (3.1)

• F1 score: The F1 score is a measure that combines precision and recall into a single

metric, providing a balanced assessment of the performance of the model. The F1

 50

score takes into account both false positives and false negatives. In this study, the

developed model achieved an F1 score of 96.69 %, indicating a high balance

between precision and recall. This score suggests the model has a good balance

between correctly identifying positive cases and minimizing false positives and

false negatives.

𝑭𝟏 − 𝑺𝒄𝒐𝒓𝒆 = 	 4∗(7&%*.0.(/∗8%*233)
7&%*.0.(/:8%*233

 (3.2)

 Figure 3.16: Code snippet of how the performance metrics was calculated (Ramadhani,2024)

Figure 3.16 shows the code snippet that has been used to imports three performance

metrics from TensorFlow's Keras library: Precision, Recall, and BinaryAccuracy. The

following is a breakdown of the code and what it does:

 51

from tensorflow.keras.metrics import Precision, Recall, BinaryAccuracy: This line

imports the required performance metrics from the tensorflow.keras.metrics module. These

metrics are used to evaluate the performance of classification models.

pre = precision(): This line creates an instance of the Precision metric. This measures the

proportion of correctly predicted positive cases out of the total cases predicted as positive.

re = recall(): This line creates an instance of the Recall metric. Recall measures the

proportion of correctly predicted positive instances out of the total actual positive instances.

acc = BinaryAccuracy(): This line creates an instance of the BinaryAccuracy metric.

BinaryAccuracy calculates the accuracy of binary classification models. It measures the

proportion of correctly predicted instances (both true positives and true negatives) out of

the total number of instances.

print(f'Precision:{pre.result().numpy()},Recall:{re.result().numpy()},Accuracy:{acc.

result().numpy()}'): This line prints the current results of the metrics. By calling result()

on each metric and converting it to a NumPy array using numpy(), so as to obtain the

current value of each metric.

 52

3.10.1 Additionally, Saving the model in HDF5 format using Kera’s save function.

The trained model was saved as an HDF5 file using the .h5 file extension. The HDF5 file format

is commonly used to store and manage large amounts of numerical data, including machine

learning models.

By saving the model as an HDF5 file, it can be easily loaded and reused later without having to

retrain it from scratch. The HDF5 file contains all the necessary information about the model

architecture, weights, optimizer configuration, and training parameters, allowing you to restore the

model and make predictions on new supplied data.

To load the saved model from the HDF5 file, the load_model function from the Keras library, as

shown in the code snippet in Figure 3.17.

Figure 3.17: How the model was saved as HDF5 file (Ramadhani,2024).

By calling `model.save()`, the developed model is saved as an HDF5 file

(`BreastCancerPredictionModel.h5`) in the specified directory (`model_version 1.0`). Later, the

`load_model` function is used to load the saved model from the same directory and assign it to the

`new_model` variable for further use, as shown in Figure 4.15

 53

3.10.2 Lastly, Integrating the model with a streamlit dashboard.

Furthermore, the developed model was integrated with a dashboard made using streamlit and the

source code file named to Breast_Cancer_Prediction_Model.py. Streamlit is an open-source

Python library that allows to create and deploy custom web applications for machine learning and

data science projects. It simplifies the process of building interactive web-based interfaces by

providing an intuitive and user-friendly way to design and develop applications.

Streamlit, can quickly convert Python scripts, models, and data visualizations into interactive web

apps. It provides a high-level API that allows user to create and customize UI elements such as

buttons, sliders, dropdowns, and plots. Streamlit enables writing of code that can handle user

inputs, process data, and update the app dynamically.

Streamlit is mostly used in the data science and machine learning community because of its

simplicity and ease of use. It promotes a smooth workflow for quickly prototyping and sharing

ideas, making it a popular choice for building interactive data applications and creating demos for

ML models. To run the model’s dashboard, we run the command streamlit run

Breast_Cancer_Prediction_Model.py on the terminal after navigate to the directory where the

Breast_Cancer_Prediction_Model.py file is located.

 54

Figure 3.18: A home page of an integrated model with streamlit (Ramadhani,2024).

Figure 3.18 shows the dashboard of the model developed using Streamlit. It has the following

menu options:

Home: This option displays the home page, which serves as an introduction to the application. It

provides users with an overview of the model and giving them a context of what the model does

and how to use it.

Model Evaluation: Selecting this option presents users with the values of evaluation metrics such

as accuracy, recall, precision, and F1 score. These metrics provide an assessment of the

performance of the developed model and can help users understand its effectiveness as shown in

Figure 3.19.

 55

Figure 3.19: Model's evaluation metrics (Ramadhani,2024).

New Patient: This button give user a window where user can upload a new MRI image for

prediction. By clicking on this option, users can access the place to select a new MRI image file,

which will be processed by the model and make predictions related to either the image provided

belong to benign or malignant class . It provides a means for users to interact with the model and

receive predictions for new patients as shown in Figure 3.20 , Figure 3.21 and Figure 3.22.

Figure 3.20: Page for new prediction of a new MRI image (Ramadhani,2024).

 56

Figure 3.21: Predicted outcome from a new MRI image, i.e., the probability outcome (0.999) and
the class of an MRI image (Malignant) (Ramadhani,2024).

Figure 3.22: Predicted outcome from a new MRI image, i.e., the probability outcome (0.00034)
and the class of an MRI image (Benign) (Ramadhani,2024).

 57

About This Model: This button provides information about how the model was built. It could

include details about the architecture, training data, preprocessing steps, and any other relevant

information that would help users understand the underlying model and its development process

as shown in Figure 3.23.

Figure 3.23: About the model(Ramadhani,2024).

Overall, the developed streamlit dashboard offers a user-friendly interface with distinct menu

options. It provides an introduction, showcases model evaluation metrics, allows users to upload

new MRI images for prediction, and shares information about the model's construction. This way,

users can navigate through the different sections, understand the model's performance, interact

with it, and gain insights into its development.

 58

CHAPTER FOUR

4 RESEARCH FINDINDS AND DISCUSSION

4.1 Overview

This chapter presents and discusses the research findings. The evaluation metrics used to assess

the performance of the model include accuracy and F1 score. The purpose of this chapter is to

provide an in-depth analysis of the outcomes and implications of this study.

4.2 Discussion

The achieved evaluation metrics demonstrate the efficacy of the CNN model in classifying Breast

MRI images.

The high accuracy score of 96.4% indicates that the model made correct predictions for a

significant portion of the MRI images. This demonstrates the model's capability to effectively

classify between different classes and make accurate classifications.

The F1 score of 96.69 % suggests that the model strikes a good balance between precision and

recall. This balance is important to avoid overly biased predictions towards either false positives

or false negatives.

 59

Figure 4.1: A plot of accuracy against epochs (Ramadhani,2024).

In Figure 4.1, the accuracy of the model is represented on the y-axis, while the number of epochs

is depicted on the x-axis. The plot shows how the accuracy of the model changes as the number of

training epochs increases.

Initially, at the beginning of training, the accuracy was low as the model was still learning and

adjusting its parameters. However, as the epochs progress, the accuracy tends to improve. This

improvement indicates that the model was getting better at correctly classifying breast cancer cases

based on the MRI images,(Zhao et al., 2018).

The plot demonstrates an increasing trend in accuracy with each epoch, indicating that the model's

performance was improving over time. The rate at which the accuracy increases vary, with larger

improvements in the earlier epochs and possibly slower progress as training continues.

 60

The increasing trend of accuracy with epoch was encouraging sign, suggesting that the model is

effectively learning the patterns and features in the MRI images that are indicative of breast cancer.

The model becomes more confident in its predictions as it is exposed to more training data and

learns from it.

The plot of accuracy vs epoch provides insights into the model's learning progress and can help

determine when to stop training to avoid overfitting. It also serves as a visual representation of the

performance of the model over time, showcasing the increasing assurance and reliability of the

breast cancer detection model as the number of epochs increases (Zhao et al., 2018).

Figure 4.2: Plot of a loss against epochs (Ramadhani,2024).

Figure 4.2,shows a plot of loss vs. epoch for the CNN model used in breast cancer detection using

MRI images shows that the loss of the model is represented on the y-axis, while the number of

 61

epochs is depicted on the x-axis. The plot illustrates how the loss, which is a measure of the model's

prediction error, changes as the number of training epochs increases.

At the beginning of training, the value of the loss was relatively high as the model's initial

predictions are likely to be far from the true labels. However, as the epochs progress and the model

learn from the training data, the loss gradually decreases.

The decreasing trend in the loss indicates that the model was becoming more accurate in its

predictions over time. As the model adjusts its parameters through optimization algorithms, it

minimizes the difference between its predictions and the true labels. Consequently, the loss value

decreases, signifying improved performance in capturing the patterns and features associated with

breast cancer in the MRI images, (Zhao et al., 2018).

Ideally, the loss should decrease steadily with each epoch. However, it is important to monitor the

plot closely for any irregularities or fluctuations in the loss curve. Sharp spikes or sudden increases

in the loss may indicate that the model is overfitting to the training data or encountering other

issues. On the other hand, a loss curve that plateaus or levels off may suggest that the model has

reached its optimal performance and further training might not significantly improve the results.

The plot of loss vs epoch provides valuable insights into the learning progress of the CNN model.

It helps assess the effectiveness of the model in minimizing errors and refining its predictions over

time. By observing the decreasing trend in the loss, we gain confidence in the model's ability to

accurately detect breast cancer based on the MRI images ,(Zhao et al., 2018).

Overall, a decreasing loss value with increasing epochs signifies the model's learning capability

and its improved performance in detecting breast cancer using MRI images.

 62

Table 5.1: Comparison of the accuracy of this research in relation to prior studies.

RESEARCH DATASETS USED ACCURANCY
Yurttakal et al.,
(2020)

Breast MRI images of 200 Cases among them, 98 are

benign and 102 malignant from (Turkey)

97.5%

Zuluaga-Gomez
et al., (2021)

1120 thermal images from DMR-IR Database

(UK)

92%

Alanazi et al.,
(2021)

275,000, 50 ×50-pixel RGB image patches from Kaggle 87%

Ragab et al.,
(2019)

The digital database for screening mammography

(DDSM) dataset comprises 2,620 cases, while the Curated

Breast Imaging Subset of DDSM (CBIS-DDSM) dataset

includes 753 cases of microcalcifications and 891 cases of

masses.

73.6%

Zhao et al.,(2018) 122 digital mammogram images in which 54 malignant

cases and 68 benign cases obtained from the

Mammography Image Analysis Society (MIAS) database

97%

This study
(Ramadhani
Mrisho,2024)

Uses a total of 1419 MRI images. The datasets consist of

700 malignant and 719 benign.

96.4%

In Table 5.1, Yurttakal et al. (2020) achieved an accuracy of 97.57% using breast MRI images

from Turkey, analyzed in the MATLAB environment.

Zhao et al. (2018) obtained an accuracy of 97% using digital mammogram images from the MIAS

database.

Zuluaga-Gomez et al. (2021) obtained an accuracy of 92% by employing thermal images from

the DMR-IR Database.

 63

Alanazi et al. (2021) obtained an accuracy of 87% using 275,000 RGB image patches from Kaggle.

Lastly Ragab et al. (2019) achieved the lowest accuracy of 73.6% using the DDSM and CBIS-

DDSM datasets in the MATLAB environment.

This study achieved an accuracy of 96.4% using a dataset of 1,419 MRI images, including both

malignant and benign cases, indicating that the developed model can perform better in breast

cancer prediction in our local health systems. Simply the developed model has also achieved high

accuracy precision, recall as well as F1-score .

4.3 Summary

4.3.1 Objective 1

To extract features in magnetic resonance images (MRI) that are used in detecting breast

cancer using CNN.

This objective was accomplished by employing CNN layers, as shown in Chapter 3 in

Section 3.9. Thus, Convolutional Neural Networks (CNNs) are capable of extracting

crucial features from breast images for predicting breast cancer and differentiating between

benign and malignant cases. These features encompass various aspects of the images.

Firstly, CNNs capture texture patterns within the breast tissue, detecting irregularities, fine

structures, and areas with distinct texture variations. Secondly, they learn to analyze shape

and contour information, identifying irregular or asymmetrical shapes typically associated

with malignancy, as opposed to regular and symmetrical shapes indicative of benign

structures. CNNs also capture spatial relationships between different regions within the

breast image, considering the distribution of features like microcalcifications or masses.

Additionally, they focus on tumor margins, detecting irregular and spiculated edges

 64

associated with malignancy and smoother, better-defined margins typically found in

benign masses. Lastly, CNNs learn to distinguish between different tissue densities,

recognizing that dense breast tissue is connected to a higher risk of obtaining breast cancer.

By extracting these features automatically, CNNs enable accurate breast cancer prediction.

4.3.2 Objective 2

To develop a model which classifies between benign and malignant breast tissues of our

local breast images at an early stage using a convolutional neural network algorithm.

In achieving this objective. Python 3.7 was used to build a CNN model using different

Python libraries like TensorFlow, Keras, OS, CV2, and others, as shown in Chapter 3 in

Section 3.9. The developed model is capable of classifying MRI images between benign

and malignant tumors. Additionally, this achievement underscores the importance of

thoughtful dataset augmentation and the utilization of cutting-edge technologies in the

development of effective neural network algorithms for medical image classification.

4.3.3 Objective 3

To evaluate the performance of the developed model by employing performance metrics

such as accuracy and F1 score.

To achieve this objective, The model was assessed using accuracy and the F1 score. The

model achieved high accuracy and F1-scores of 96.4%, and 96.6%, respectively, as shown

in Chapter 3 in Section 3.10. This metric indicates the model's potential as a valuable tool

for breast cancer prognosis.

 65

5 CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Overview

This chapter comprises three main sections, namely, the conclusion, recommendations, and

limitations of the study. In the conclusion section, the key findings and outcomes of the research

are summarized and discussed. The recommendations section provides suggestions and guidance

based on the study's results for future actions or improvements. Lastly, the limitations of the study

are acknowledged and discussed, highlighting any constraints or challenges encountered during

the research process.

5.2 Conclusion

The research was conducted at Muhimbili National Hospital. The main objective of the study was

to develop a CNN breast cancer prediction model using Python that could classify between Benign

and Malignant tumors based on MRI images.

The study uses 30 MRI images from the Muhimbili National Hospital, consisting of 8 malignant

and 22 benign cases. To address the data scarcity, data augmentation techniques such as rotation,

shifting, flipping, and shearing were applied using Python, resulting in a dataset of 1419 images,

containing 700 benign and 719 malignant cases.

The CNN model architecture included multiple layers such as Conv2D, MaxPooling2D, and Dense

layers with appropriate activation functions. The dataset was divided into training, validation, and

testing sets. The model achieved impressive evaluation metrics, including high accuracy, recall,

precision, and F1 score, indicating its effectiveness in accurately identifying breast cancer cases.

 66

The research findings highlight the potential of CNNs and data augmentation techniques in

improving breast cancer identification. Despite the initial limited dataset, data augmentation

increased the number of samples and improved model performance. The proposed CNN

architecture demonstrated robust feature extraction and classification capabilities.

Further research with larger datasets and diverse populations is recommended to validate and

generalize the proposed model. Nevertheless, this study contributes significantly to the field of

breast cancer detection by offering an efficient approach using CNNs for early identification.

5.3 Limitation of the study

The study has limitations that should be considered. Firstly, the dataset used in this research is

relatively small, consisting of only 30 original MRI images. This limited sample size may not fully

represent the variability and complexity of real-world breast cancer cases. Therefore, the

generalizability of the performance of the model to larger and more diverse datasets needs to be

further investigated.

Additionally, the study focused on using MRI images as the sole modality for breast cancer

detection. In real-world clinical settings, multiple imaging modalities includes mammography,

and ultrasound results are often used in conjunction for accurate diagnosis. The exclusion of these

complementary imaging modalities may limit the model's ability to perform at its full potential.

Furthermore, the research solely focused on binary classification of breast cancer cases into

malignant and benign categories. While this provides valuable insights into early detection, the

model's performance in distinguishing different subtypes or stages of breast cancer was not

explored. Future studies could consider incorporating more detailed classification tasks.

 67

Lastly, the study was conducted using a specific dataset from Muhimbili National Hospital, which

may have specific demographic and regional characteristics. The applicability of the model to

other populations and healthcare settings should be investigated to assess its generalizability.

5.4 Recommendations

The study has shown promising results in the early identification of breast cancer using CNN.

However, there are still several chances for further research that can be explored to improve the

accuracy and reliability of the model.

One potential area of future research could be to expand the dataset used in this study to include

more diverse images of breast tissue from different populations and demographics[multi-center].

This could help to ensure that the model is effective in identifying breast cancer in a wider range

of patients.

Finally, it may be useful to explore the integration of this model into clinical practice and to

investigate the potential benefits and limitations of using such a model in real-world settings.

 68

REFERENCES

Al-Haija, Q. A., & Adebanjo, A. (2020). Breast cancer diagnosis in histopathological images using
ResNet-50 convolutional neural network. IEMTRONICS 2020 - International IOT,
Electronics and Mechatronics Conference, Proceedings, 50.
https://doi.org/10.1109/IEMTRONICS51293.2020.9216455

Alanazi, S. A., Kamruzzaman, M. M., Islam Sarker, M. N., Alruwaili, M., Alhwaiti, Y.,
Alshammari, N., & Siddiqi, M. H. (2021). Boosting Breast Cancer Detection Using
Convolutional Neural Network. Journal of Healthcare Engineering, 2021.
https://doi.org/10.1155/2021/5528622

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional
neural networks,” in Advances in Neural Information Processing Systems 25, F. Pereira, C.
J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–
1105. [Online]. Available: http://papers.nips.cc/paper/ 4824-imagenet-classification-with-
deep-convolutional-neural-networks. pdf

Eroğlu, Y., Yildirim, M., & Çinar, A. (2021). Convolutional Neural Networks based classification
of breast ultrasonography images by hybrid method with respect to benign, malignant, and
normal using mRMR. Computers in Biology and Medicine, 133(April).
https://doi.org/10.1016/j.compbiomed.2021.104407

Fonseca, P., Mendoza, J., Wainer, J., Ferrer, J., Pinto, J., Guerrero, J., & Castaneda, B. (2015).
Automatic breast density classification using a convolutional neural network architecture
search procedure. Medical Imaging 2015: Computer-Aided Diagnosis, 9414, 941428.
https://doi.org/10.1117/12.2081576

Khooa, V. S., Dearnaley, D. P., Finniganb, D. J., Padhani, A., Tannerd, S. F., & Leachd, M. (1997).
Magnetic resonance imaging (MRI): considerations and applications in radiotherapy
treatment planning. 42, 1–15.

Lu, H. C., Loh, E. W., & Huang, S. C. (2019). The Classification of Mammogram Using
Convolutional Neural Network with Specific Image Preprocessing for Breast Cancer
Detection. 2019 2nd International Conference on Artificial Intelligence and Big Data,
ICAIBD 2019, 9–12. https://doi.org/10.1109/ICAIBD.2019.8837000

Ragab, D. A., Sharkas, M., Marshall, S., & Ren, J. (2019). Breast cancer detection using deep
convolutional neural networks and support vector machines. PeerJ, 2019(1), 1–23.
https://doi.org/10.7717/peerj.6201

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep
Learning. Journal of Big Data. https://doi.org/10.1186/s40537-019-0197-0

Wang, J., & Perez, L. (n.d.). Learning.

Yue, W., Wang, Z., Chen, H., Payne, A., & Liu, X. (2018). Machine learning with applications in
breast cancer diagnosis and prognosis. Designs, 2(2), 1–17.

 69

https://doi.org/10.3390/designs2020013

Yurttakal, A. H., Erbay, H., İkizceli, T., & Karaçavuş, S. (2020). Detection of breast cancer via
deep convolution neural networks using MRI images. Multimedia Tools and Applications,
79(21–22), 15555–15573. https://doi.org/10.1007/s11042-019-7479-6

Zhao, X., Wang, X., & Wang, H. (2018). Classification of Benign and Malignant Breast Mass in Digital
Mammograms with Convolutional Neural Networks. ACM International Conference Proceeding
Series, 47–50. https://doi.org/10.1145/3285996.3286006

Zuluaga-Gomez, J., Al Masry, Z., Benaggoune, K., Meraghni, S., & Zerhouni, N. (2021). A CNN-based
methodology for breast cancer diagnosis using thermal images. Computer Methods in Biomechanics
and Biomedical Engineering: Imaging and Visualization, 9(2), 131–145.
https://doi.org/10.1080/21681163.2020.1824685

 70

6 APPENDICES
APPENDIX I : Published Paper

 71

 72

 73

 74

 75

 76

APPENDIX II : Source code of the developed model

 ['.DS_Store', 'Malignant','Benign']

Out[6]: ['.DS_Store', 'Malignant', 'Benign']

Out[7]: ['malignant_0_2802.jpg',
'malignant_0_8491.jpg',
 'malignant_0_652.jpg',
 'malignant_0_4283.jpg',
 'malignant_0_3275.jpg',
 'malignant_0_691.jpg',
 'malignant_0_9599.jpg',
 'malignant_0_8877.jpg',
 'malignant_0_9228.jpg',
 'malignant_0_5412.jpg',
 'malignant_0_7239.jpg',
 'malignant_0_1072.jpg',
 'malignant_0_3665.jpg',
 'malignant_0_5572.jpg',
 'malignant_0_3671.jpg',
 'malignant_0_3659.jpg',
 'malignant_0_8297.jpg',
 'malignant_0_5957.jpg',

#import all required Libraries

import tensorflow as tf
import os # Navigation into system folders
import cv2 #for viewing imagess
from matplotlib import pyplot as
plt
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D,Dense,Flatten,Dr
from tensorflow.keras import regularizers
from tensorflow.keras.callbacks import EarlyStopping

os.listdir('data')

data_dir='data'

os.listdir(data_dir)

os.listdir(os.path.join(data_dir,'Malignant'))

 77

 'malignant_0_732.jpg',
 'malignant_0_3467.jpg',
 'malignant_0_929.jpg',

h"p://localhost:8888/nbconvert/html/Research%20Project/30_from…reast%20Cancer%20Predic@on%20Model-Copy1.ipynb?download=false
 'malignant_0_8269.jpg',
 'malignant_0_4490.jpg',
 'malignant_0_4645.jpg',
 'malignant_0_6640.jpg',
 'malignant_0_2432.jpg',
 'malignant_0_6132.jpg',
 'malignant_0_7562.jpg',
 'malignant_0_1113.jpg',
 'malignant_0_4094.jpg',
 'malignant_0_3923.jpg',
 'malignant_0_9598.jpg',
 'malignant_0_6330.jpg',
 'malignant_0_2630.jpg',
 'malignant_0_9765.jpg',
 'malignant_0_3506.jpg',
 'malignant_0_8447.jpg',
 'malignant_0_2181.jpg',
 'malignant_0_8490.jpg',
 'malignant_0_2803.jpg',
 'malignant_0_9968.jpg',
 'malignant_0_5820.jpg',
 'malignant_0_8337.jpg',
 'malignant_0_9997.jpg',
 'malignant_0_7992.jpg',
 'malignant_0_6865.jpg',
 'malignant_0_5377.jpg',
 'malignant_0_3060.jpg',
 'malignant_0_5439.jpg',
 'malignant_0_2430.jpg',
 'malignant_0_9565.jpg',

 'malignant_0_4874.jpg',]

#img=cv2.imread(os.path.join(data_dir,'Benign','h2.jpg'))

#img.shape

#plt.imshow(img)

 78

Found 1419 files belonging to 2 classes.

Out[12]: array([1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0,
1, 0, 0,
 1, 1, 1, 0, 0, 1, 0, 0, 1, 1], dtype=int32)

Out[13]: (array([[[[0.00392157, 0.00392157, 0.00392157],
[0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157],
 ...,
 [0. , 0. , 0.],
 [0. , 0. , 0.],
 [0. , 0. , 0.]],
 [[0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157],
[0.00392157, 0.00392157, 0.00392157],
 ...,
 [0. , 0. , 0.],
 [0. , 0. , 0.],
 [0. , 0. , 0.]],
 [[0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157],
 ...,
 [0. , 0. , 0.],
 [0. , 0. , 0.],
 [0. , 0. , 0.]],
...,

data=tf.keras.utils.image_dataset_from_directory('data')

#Badili 0-255 kwenda 0 and 1
my_data=data.map(lambda x,y:(x/255,y))

data_iterator= my_data.as_numpy_iterator()

batch=data_iterator.next()

batch[1]

batch

 79

 [[0.03921569, 0.03921569, 0.03921569],
 [0.03921569, 0.03921569, 0.03921569],

[0.03921569, 0.03921569, 0.03921569],
 ...,
 [0. , 0. , 0.],
 [0. , 0. , 0.],
 [0. , 0. , 0.]],

 [[0.03921569, 0.03921569, 0.03921569],
 [0.03374694, 0.03374694, 0.03374694],
 [0.03374694, 0.03374694, 0.03374694],
 ...,
 [0. , 0. , 0.],
 [0. , 0. , 0.],
 [0. , 0. , 0.]],

 [[0.03556985, 0.03556985, 0.03556985],
 [0.0292739 , 0.0292739 , 0.0292739],
 [0.02883241, 0.02883241, 0.02883241],
 ...,
 [0. , 0. , 0.],
 [0. , 0. , 0.],

[0. , 0. , 0.]]],

 [[[0.4046243 , 0.4046243 , 0.4046243],
 [0.52548444, 0.52548444, 0.52548444],
 [0.5739181 , 0.5739181 , 0.5739181],
 ...,
 [0. , 0. , 0.],
 [0. , 0. , 0.],

[0. , 0. , 0.]],

 [[0.43476754, 0.43476754, 0.43476754],
 [0.5008138 , 0.5008138 , 0.5008138],

[0.56170535, 0.56170535, 0.56170535],
 ...,
 [0. , 0. , 0.],
 [0. , 0. , 0.],

[0. , 0. , 0.]],

 [[0.43676472, 0.43676472, 0.43676472],
 [0.4693321 , 0.4693321 , 0.4693321],
 [0.55607957, 0.55607957, 0.55607957],
 ...,
 [0. , 0. , 0.],

 80

 [0. , 0. , 0.],
 [0. , 0. , 0.]],

 ...,

 [[0.01568628, 0.01568628, 0.01568628],
 [0.01519608, 0.01519608, 0.01519608],
 [0.01568628, 0.01568628, 0.01568628],
 ...,
 [0. , 0. , 0.],
 [0. , 0. , 0.],
 [0. , 0. , 0.]],

 [[0.01568628, 0.01568628, 0.01568628],
 [0.01519608, 0.01519608, 0.01519608],
 [0.01568628, 0.01568628, 0.01568628],
 ...,
 [0. , 0. , 0.],
 [0. , 0. , 0.],
 [0. , 0. , 0.]],

 [[0.01568628, 0.01568628, 0.01568628],
 [0.01568628, 0.01568628, 0.01568628],
 [0.01568628, 0.01568628, 0.01568628],
 ...,
 [0. , 0. , 0.],
 [0. , 0. , 0.],
[0. , 0. , 0.]]],

 [[[0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157],
 ...,
 [0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157]],

 [[0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157],
 ...,
 [0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157]],

 [[0.00392157, 0.00392157, 0.00392157],

 81

 [0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157],
 ...,
 [0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157]],

 ...,

 [[0.07581571, 0.07581571, 0.07581571],
 [0.08995481, 0.08995481, 0.08995481], [0.10526961,
0.10526961, 0.10526961],
 ...,
 [0.07328431, 0.07328431, 0.07328431],
 [0.03259421, 0.03259421, 0.03259421],
 [0.02887944, 0.02887944, 0.02887944]],

 [[0.07438725, 0.07438725, 0.07438725],
 [0.08002451, 0.08002451, 0.08002451],
 [0.0914254 , 0.0914254 , 0.0914254],
 ...,
 [0.07328431, 0.07328431, 0.07328431],
 [0.04546569, 0.04546569, 0.04546569],
 [0.04546569, 0.04546569, 0.04546569]],

 [[0.0942402 , 0.0942402 , 0.0942402],
 [0.08811274, 0.08811274, 0.08811274],
 [0.08598728, 0.08598728, 0.08598728],
 ...,
 [0.06037454, 0.06037454, 0.06037454],
 [0.05281863, 0.05281863, 0.05281863],
 [0.04093137, 0.04093137, 0.04093137]]],

 ...,

 [[[0. , 0. , 0.],
 [0. , 0. , 0.],
 [0. , 0. , 0.],
 ...,
 [0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157],
[0.00392157, 0.00392157, 0.00392157]],

 [[0. , 0. , 0.],
 [0. , 0. , 0.],

 82

 [0. , 0. , 0.],
 ...,
 [0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157]],

 [[0. , 0. , 0.],
 [0. , 0. , 0.],

[0. , 0. , 0.],
 ...,
 [0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157]],

 ...,

 [[0.00392157, 0.00392157, 0.00392157], [0.00392157,
0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157],
 ...,
 [0.0066636 , 0.0066636 , 0.0066636],
 [0.00392157, 0.00392157, 0.00392157],

 [0.07671569, 0.07671569, 0.07671569], ...,
 [0. , 0. , 0.],
 [0. , 0. , 0.],
 [0. , 0. , 0.]],

 [[0.03529412, 0.03529412, 0.03529412],
 [0.05416667, 0.05416667, 0.05416667],
 [0.08317823, 0.08317823, 0.08317823],
 ...,
 [0. , 0. , 0.],
 [0. , 0. , 0.],
 [0. , 0. , 0.]],

 [[0.03529412, 0.03529412, 0.03529412],
 [0.05833333, 0.05833333, 0.05833333],
 [0.08848039, 0.08848039, 0.08848039],
 ...,
 [0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157],
 [0.00392157, 0.00392157, 0.00392157]]],

 [0.0292739 , 0.0292739 , 0.0292739]]]], dtype=float32),
array([1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0 ,
 1, 1, 1, 0, 0, 1, 0, 0, 1, 1], dtype=int32))

 83

#class 0 = Benign -Non Cancelous
#class 1=Malgnant -Cancelous
fig,ar=plt.subplots(ncols=4,figsize=(20,20))
for cs,img in enumerate(batch[0][:4]):
ar[cs].imshow(img)
 ar[cs].title.set_text(batch[1][cs])

#Spriting the datasets into train size ,validation size and testing
size
train_size=int(len(mydata)*.5) val_size=int(len(mydata)*.4)
test_size=int(len(mydata)*.1)+1

len(test)

#Bulding a CNN deep leaning Model
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D,Dense,Flatten,Dr

 model=Sequential()

 84

#layer 1

model.add(Conv2D(16,(3,3),1,activation='relu',input_shape=(256,256,3)))

#layer2

model.add(MaxPooling2D())

#Layer 3

model.add(Conv2D(32,(3,3),1,activation='relu'))

#Layer 4

model.add(MaxPooling2D())

#Layer 5

model.add(Conv2D(16,(3,3),1,activation='relu'))

#Layer 6

model.add(MaxPooling2D())

#Layer 7

model.add(Flatten())

#Adding L2 regularization to prevent overfitting in neural
#networks by adding a penalty term to the loss function that encourages t

#Layer 8

model.add(Dense(256,activation='relu',kernel_regularizer=regularizers.l2

#Adding a Dropout layer after a fully connected layer to prevent
overfitt

 85

Model: "sequential"

 Layer (type) Output Shape Param #
===
conv2d (Conv2D) (None, 254, 254, 16) 448
max_pooling2d (MaxPooling2D (None, 127, 127, 16) 0)
conv2d_1 (Conv2D) (None, 125, 125, 32) 4640
max_pooling2d_1 (MaxPooling (None, 62, 62, 32) 0
2D)
conv2d_2 (Conv2D) (None, 60, 60, 16) 4624
max_pooling2d_2 (MaxPooling (None, 30, 30, 16) 0
2D)
flatten (Flatten) (None, 14400) 0
dense (Dense) (None, 256) 3686656
dropout (Dropout) (None, 256) 0
dense_1 (Dense) (None, 1) 257
===

#Layer 9

model.add(Dropout(0.2))
#Layer 10

model.add(Dense(1,activation='sigmoid'))

#compling the model
model.compile('adam',loss=tf.losses.BinaryCrossentropy(),metrics=['accura

model.summary()

 86

Total params: 3,696,625
Trainable params: 3,696,625
Non-trainable params: 0

Epoch 1/30
22/22 [==============================] - ETA: 0s - loss: 2.2250 - accura
cy: 0.7230
22/22 [==============================] - 17s 697ms/step - loss: 2.2250 -
accuracy: 0.7230 - val_loss: 0.7458 - val_accuracy: 0.7552 Epoch 2/30
22/22 [==============================] - 16s 719ms/step - loss: 0.5419 -
accuracy: 0.8679 - val_loss: 0.3395 - val_accuracy: 0.9392 Epoch 3/30
22/22 [==============================] - 16s 715ms/step - loss: 0.2875 -
accuracy: 0.9616 - val_loss: 0.2345 - val_accuracy: 0.9774 Epoch 4/30
22/22 [==============================] - 16s 707ms/step - loss: 0.1866 -
accuracy: 0.9830 - val_loss: 0.1537 - val_accuracy: 0.9948 Epoch 5/30
22/22 [==============================] - 16s 711ms/step - loss: 0.1358 -
accuracy: 0.9929 - val_loss: 0.1654 - val_accuracy: 0.9792 Epoch 6/30
22/22 [==============================] - 16s 706ms/step - loss: 0.1443 -
accuracy: 0.9830 - val_loss: 0.1387 - val_accuracy: 0.9948 Epoch 7/30
22/22 [==============================] - 16s 705ms/step - loss: 0.1482 -
accuracy: 0.9929 - val_loss: 0.1124 - val_accuracy: 1.0000 Epoch 8/30
22/22 [==============================] - 16s 718ms/step - loss: 0.1223 -
accuracy: 0.9915 - val_loss: 0.1987 - val_accuracy: 0.9566 Epoch 9/30
22/22 [==============================] - 16s 713ms/step - loss: 0.1544 -
accuracy: 0.9901 - val_loss: 0.1262 - val_accuracy: 0.9931 Epoch 10/30
22/22 [==============================] - 16s 707ms/step - loss: 0.1636 -
accuracy: 0.9773 - val_loss: 0.1933 - val_accuracy: 0.9878 Epoch 11/30
22/22 [==============================] - 16s 729ms/step - loss: 0.1483 -
accuracy: 0.9972 - val_loss: 0.1007 - val_accuracy: 0.9965 Epoch 12/30
22/22 [==============================] - 17s 747ms/step - loss: 0.0825 -
accuracy: 0.9957 - val_loss: 0.0980 - val_accuracy: 0.9931 Epoch 13/30
22/22 [==============================] - 17s 739ms/step - loss: 0.1148 -
accuracy: 0.9915 - val_loss: 0.1292 - val_accuracy: 0.9896 Epoch 14/30
22/22 [==============================] - 16s 718ms/step - loss: 0.1307 -
accuracy: 0.9886 - val_loss: 0.1555 - val_accuracy: 0.9809 Epoch 15/30
22/22 [==============================] - 16s 715ms/step - loss: 0.1222 -
accuracy: 0.9957 - val_loss: 0.0811 - val_accuracy: 1.0000 Epoch 16/30
22/22 [==============================] - 16s 736ms/step - loss: 0.0718 -
accuracy: 0.9986 - val_loss: 0.0536 - val_accuracy: 0.9983 Epoch 17/30

#Stop training when a monitored metric has stopped improving.
#For stopping the training process if validation loss does not change
fo early_stop = EarlyStopping(monitor='val_loss', patience=5)

hist=model.fit(train,epochs=30,validation_data=val,callbacks=[early_stop]

 87

22/22 [==============================] - 16s 733ms/step - loss: 0.0727 -
accuracy: 0.9886 - val_loss: 0.2055 - val_accuracy: 0.9427 Epoch 18/30
22/22 [==============================] - 16s 725ms/step - loss: 0.1989 -
accuracy: 0.9716 - val_loss: 0.1868 - val_accuracy: 0.9931 Epoch 19/30
22/22 [==============================] - 16s 728ms/step - loss: 0.1437 -
accuracy: 0.9943 - val_loss: 0.0854 - val_accuracy: 0.9983 Epoch 20/30
22/22 [==============================] - 16s 715ms/step - loss: 0.0616 -
accuracy: 0.9986 - val_loss: 0.0408 - val_accuracy: 1.0000 Epoch 21/30
22/22 [==============================] - 16s 718ms/step - loss: 0.0294 -
accuracy: 1.0000 - val_loss: 0.0216 - val_accuracy: 1.0000 Epoch 22/30
22/22 [==============================] - 17s 743ms/step - loss: 0.0249 -
accuracy: 1.0000 - val_loss: 0.0279 - val_accuracy: 1.0000 Epoch 23/30
22/22 [==============================] - 16s 707ms/step - loss: 0.0475 -
accuracy: 0.9943 - val_loss: 0.1241 - val_accuracy: 0.9688 Epoch 24/30
22/22 [==============================] - 15s 689ms/step - loss: 0.1099 -
accuracy: 0.9943 - val_loss: 0.1028 - val_accuracy: 0.9983 Epoch 25/30
22/22 [==============================] - 16s 693ms/step - loss: 0.0732 -
accuracy: 1.0000 - val_loss: 0.0509 - val_accuracy: 1.0000 Epoch 26/30
22/22 [==============================] - 15s 686ms/step - loss: 0.0336 -
accuracy: 1.0000 - val_loss: 0.0257 - val_accuracy: 1.0000

In
[30]

:

#hist.history

#Plotting the Loss Perfomance
fig_1=plt.figure()
plt.plot(hist.history['loss'],color='teal',label='loss')
plt.plot(hist.history['val_loss'],color='orange',label='val_loss')
fig_1.suptitle('Loss vs Epochs',fontsize=10)
plt.legend(loc="upper right")
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()

 88

In
[354
…

#Plotting the accuracy Perfomance
 fig_2=plt.figure()
plt.plot(hist.history['accuracy'],color='green',label='accuracy')
plt.plot(hist.history['val_accuracy'],color='orange',label='val_accuracy'
fig_2.suptitle('Accuracy vs Epochs',fontsize=10)
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend(loc="upper left")
plt.show()

 89

import Precision,Recall,BinaryAccuracy

pre=Precision() re=Recall()
acc=BinaryAccuracy()

In [342… for batch in test.as_numpy_iterator():
X,y=batch
prediction=model.predict(X)
pre.update_state(y,prediction)
re.update_state(y,prediction)
acc.update_state(y,prediction)

1/1 [==============================] - 0s 211ms/step
1/1 [==============================] - 0s 143ms/step
1/1 [==============================] - 0s 152ms/step
1/1 [==============================] - 0s 151ms/step
1/1 [==============================] - 0s 107ms/step

 90

In [343… print(f'

Precision:{pre.result().numpy()},Recall:{re.result().numpy()},Ac

Precision:1.0,Recall:0.9358974099159241,Accuracy:0.9640287756919861

In [344… f1_score=
2*(pre.result().numpy()*re.result().numpy())/(pre.result().nump

In [345… f1_score

Out[345]: 0.9668874331228751

In [347… resize=tf.image.resize(img,(256,256))
plt.imshow(resize.numpy().astype(int))
plt.show()

import cv2

img=cv2.imread('benign.png')
plt.imshow(img)
plt.show()

 91

In [348… prediction=model.predict(np.expand_dims(resize/255,0))

1/1 [==============================] - 0s 21ms/step

In [349… prediction

Out[349]: array([[0.00012774]], dtype=float32)

In [350… if prediction > 0.5: print('This
image is likely to be Malignant') else:
print('This image is likely to be Benign')

This image is likely to be Benign

In [377… model.save(os.path.join('model_version
1.0','BreastCancerPredictionModel.

In [378… new_model=load_model(os.path.join('model_version
1.0','BreastCancerPredic

 92

APPENDIX III : Source code of the model’s dashboard made using streamlit

import streamlit as st
from streamlit_option_menu import option_menu
from PIL import Image, ImageOps
import time
import h5py
import tables
import random
from keras.models import load_model
from PIL import Image, ImageOps
import numpy as np
import tensorflow as tf

with st.sidebar:
 selected =option_menu(
 menu_title="Menu Option",
 options=["Home","Model Evaluation","New Patient","About This Model"],
 icons=["house","check-square","person","envelope"],
 menu_icon="list",
 default_index=0,
 styles={
 "container": {"padding": "5!important", "background-color":
"#B8D8E8"},
 "icon": {"color": "#0D6B99", "font-size": "25px"},
 "nav-link": {"font-size": "16px", "text-align": "left",
"margin": "0px", "--hover-color": "#eee"},
 "nav-link-selected": {"background-color": "#33BBFF"},
 }
)

 # Define CSS style
 style = """
 <style>
 .metrics {
 display: flex;
 justify-content: center;
 align-items: center;
 height: 100px;
 background-color: #B8D8E8;
 border-radius: 10px;
 box-shadow: 0px 2px 10px rgba(0, 0, 0, 0.1);
 margin: 20px;
 padding: 20px;
 font-size: 24px;
 font-weight: bold;
 color: #333333;
 text-align: center;
 }
 .metric-item {
 margin: 20px;
 }
 .precision {

 93

 color: green;
 }
 .recall {
 color: blue;
 }
 .accuracy {
 color: orange;
 }
 </style>
 """

 # Display the CSS style
 st.markdown(style, unsafe_allow_html=True)

#Home button
if selected=="Home":
 times_new_roman_style = """
 <style>
 body {
 font-family: 'Times New Roman', Times, serif;
 }
 </style>
 """

 # Use the css method to apply the CSS style to the page
 st.write(times_new_roman_style, unsafe_allow_html=True)

 # Display some text using the Times New Roman font
 #st.write("This text is in Times New Roman.")

 #st.success('BREAST CANCER PREDICTION MODEL')
 st.write("<div class='metrics'>Breast Cancer Prediction Model</div>",
unsafe_allow_html=True)
 #st.write("<h3 style='text-align: center;font-family:Baskerville'>Breast
Cancer Prediction Model</h2>", unsafe_allow_html=True)
 #st.image("ai.jpeg",use_column_width='center',width=700)

 with st.empty():
 st.image("ai.jpeg",use_column_width='center',width=700)

 #instrctions
 st.write("<h5 style='text-align: left;font-
family:Tahoma'>Instructions:</h2>", unsafe_allow_html=True)
 st.write(""
 """<i style='text-align: justify;font-
family:Baskerville;font-size:20px'>For New Prediction go to New Patient
Button on Side bar then upload patient Breast MRI image " ".</i>"""
 "<i style='text-align: justify;font-family:Baskerville;font-
size:20px'>To see the Evaluation perfomance of the Model click on Model
Accuarancy on Side bar" ".</i>"
 "<i style='text-align: justify;font-family:Baskerville;font-
size:20px'>To see more information about this model click the button About
this model Button on side bar" ".</i>"
 "", unsafe_allow_html=True)

 94

#Model Accuracy button
if selected=="Model Evaluation":

 # Define the values
 precision = 1.0
 recall = 0.93
 accuracy = 0.96
 f1_score=0.96

 st.write("<div class='metrics'> Model Evaluation
Metrics</div>",unsafe_allow_html=True)
 # Display the values using the CSS style
 #st.write("<div class='metrics'>", unsafe_allow_html=True)
 st.write(f"<h3 class='metric-item precision'>Precision:
{precision}</h3>", unsafe_allow_html=True)
 st.write(f"<h3 class='metric-item recall'>Recall: {recall}</h3>",
unsafe_allow_html=True)
 st.write(f"<h3 class='metric-item accuracy'>Accuracy: {accuracy}</h3>",
unsafe_allow_html=True)
 st.write(f"<h3 class='metric-item '>F1-Score: {f1_score}</h3>",
unsafe_allow_html=True)

 st.write(""
 """<i style='text-align: justify;font-
family:Baskerville;font-size:20px'>Overall, these metrics indicate that the
model has high precision, recall, and accuracy, which suggests that it is
performing well on the classification task. " ".</i>"""
 "", unsafe_allow_html=True)

 #st.image("loss.png", use_column_width='left', width=400)
 #st.image("accuracy.png", use_column_width='right', width=400)

 #st.write("</div>", unsafe_allow_html=True)

 # st.write("This is Model Accuracy")

#Model Prediction button
if selected=="New Patient":
 # Loading the Model
 st.write("<div class='metrics'> Model Predictions</div>",
unsafe_allow_html=True)
 model = load_model('BreastCancerPredictionModel.h5')
 uploaded_image = st.file_uploader("Please Upload your MRI Breast Image for
Prediction",type=["png", "jpg", "jpeg"])
 if uploaded_image is not None:

 progress_bar = st.progress(0)
 status_text = st.empty()
 for i in range(100):
 time.sleep(0.1)
 progress_bar.progress(i + 1)

 95

 status_text.text(f"Please
Wait... {i
+ 1}%")
 image = Image.open(uploaded_image)

 #CHECKING IF AN IMAGE HAVE 3 OR 4 CHANNELS

 num_channels = len(image.getbands())
 if(num_channels==4):
 image = Image.open(uploaded_image).convert('RGB')

 resize_image= tf.image.resize(image, (256, 256))

 prediction =model.predict(np.expand_dims(resize_image/255,0))

 if(prediction<0.5):
 st.success(prediction)
 st.success("The image is most likely benign")
 else:
 st.error(prediction)
 st.error("The image is most likely malignant")

 # st.image(image, caption='Uploaded image', use_column_width=True)

if selected=="About This Model":

 st.write("<h3 style='text-align: center;font-family:Baskerville'>Model
Summary</h3>", unsafe_allow_html=True)

 st.write("<p style='text-align: justify;font-
family:Baskerville;font-size:20px'>This is a Convolutional Neural
Network(CNN) model which have been developed using the Keras deep learning
library in Python .The model has been trained and tested using 1419 MRI
images from MNH. The model consist of the following CNN layers :-"
 ".</p>", unsafe_allow_html=True)

 st.write(""
 """<p style='text-align: justify;font-
family:Baskerville;font-size:17px'>A 2D convolutional layer with 16 filters
of size 3x3 and stride 1, using the ReLU activation function. This layer
takes an input of shape (256, 256, 3) and outputs a tensor of shape (254,
254, 16), with a total of 448 parameters." ".</p>"""
 "<p style='text-align: justify;font-family:Baskerville;font-
size:17px'>A max pooling layer that downsamples the input by taking the
maximum value in each non-overlapping patch of size 2x2. This layer outputs a
tensor of shape (127, 127, 16) with no parameters." ".</p>"
 "<p style='text-align: justify;font-family:Baskerville;font-
size:17px'>Another 2D convolutional layer with 32 filters of size 3x3 and
stride 1, using the ReLU activation function. This layer takes an input of
shape (127, 127, 16) and outputs a tensor of shape (125, 125, 32), with a
total of 4,640 parameters." ".</p>"
 "<p style='text-align: justify;font-family:Baskerville;font-
size:17px'>Another max pooling layer that downsamples the input by taking the
maximum value in each non-overlapping patch of size 2x2. This layer outputs a
tensor of shape (62, 62, 32) with no parameters." ".</i>"

 96

 "<p style='text-align: justify;font-family:Baskerville;font-
size:17px'>A third 2D convolutional layer with 16 filters of size 3x3 and
stride 1, using the ReLU activation function. This layer takes an input of
shape (62, 62, 32) and outputs a tensor of shape (60, 60, 16), with a total
of 4,624 parameters." ".</p>"
 "<p style='text-align: justify;font-family:Baskerville;font-
size:17px'>A third max pooling layer that downsamples the input by taking the
maximum value in each non-overlapping patch of size 2x2. This layer outputs a
tensor of shape (30, 30, 16) with no parameters." ".</p>"
 "<p style='text-align: justify;font-family:Baskerville;font-
size:17px'>A fully connected layer with 256 neurons, using the ReLU
activation function and L2 regularization with a penalty term of 0.01. This
layer has 3,686,656 trainable parameters." ".</p>"
 "<p style='text-align: justify;font-family:Baskerville;font-
size:17px'>A layer that randomly drops out 20% of the inputs during training
to prevent overfitting. This layer has no parameters." ".</p>"
 "<p style='text-align: justify;font-family:Baskerville;font-
size:17px'>A fully connected layer with 1 neuron, using the sigmoid
activation function. This layer has 257 parameters." ".</p>"
 "", unsafe_allow_html=True)

 97

APPENDIX IV : Model’s dashboard

 98

 99

 100

APPENDIX V : Source code of data augmentation techniques used

 101

APPENDIX VI : Research clearance letter

 102

 103

APPENDIX VII : Data collection permit at MNH

 104

APPENDIX VIII : Image datasets used to build the model

