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ABSTRACT 
 

Breast cancer is a significant global health issue, and early detection is crucial for improving 

outcomes. However, Tanzania faces challenges in addressing breast cancer, including a lack of 

locally developed Convolutional Neural Network (CNN) models. This study aims to address this 

gap by using CNNs with MRI images from Muhimbili National Hospital to identify breast cancer 

cases. 

The research employed an experimental study design using a dataset of 30 MRI images, with 8 

malignant and 22 benign cases. To overcome data scarcity and overfitting risks, data augmentation 

techniques were applied, resulting in an expanded dataset of 1419 images. This augmented dataset 

provided a stronger foundation for training the CNN model tailored to Tanzania's context. 

The CNN model, developed in Python, consisted of multiple layers designed for accurate breast 

cancer identification. These layers included Conv2D and MaxPooling2D layers for feature capture, 

Dense layers for classification, and Dropout layers to prevent overfitting. The model achieved an 

accuracy of 96.4% and an F1 score of 96%, demonstrating its efficacy in identifying breast cancer 

cases. 

Despite the initial dataset's limitations, the research showcases the potential of CNNs and data 

augmentation techniques for improving breast cancer detection. Further research with larger 

datasets and diverse populations would be valuable for assessing the model's generalizability. 

Overall, this study contributes to the field of breast cancer detection by offering an efficient 

approach for early identification using CNNs for MRI images. Further research and validation 

using larger datasets and diverse populations would be valuable to assess the generalizability and 

scalability of the proposed model. 
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CHAPTER ONE 

INTRODUCTION 
1.1 Background to the study 
 

Breast cancer is a form of cancer that originates from cells within the breast tissue. It occurs when 

these cells undergo uncontrolled growth. Typically, breast cancer cells create a tumor that is 

detectable on an x-ray or through palpation as a lump. The majority of breast cancers commence 

in the milk-carrying ducts leading to the nipple (ductal cancers), while others may begin in the 

glands responsible for producing breast milk (lobular cancers),(Al-Haija & Adebanjo, 2020). 

Breast cancer is the second most common disease among Tanzanian women in terms of both 

incidence and mortality, with an estimated 3037 new cases and 1303 deaths in 2018, and is 

expected to increase by more than 120 percent in terms of both incidence and fatality by 

2040(Breast Cancer Initiative, 2017). Based on recent statistical data from the World Health 

Organization (WHO), approximately 23% of cancer cases and 14% of cancer-related deaths in 

women are attributed to breast cancer, (Zhao et al., 2018). The timely identification of breast 

cancer plays a crucial role in influencing the effectiveness of treatment, leading to a substantial 

reduction in the burden and mortality associated with the disease, (Eroglu et al., 2021). 

Breast cancer detection traditionally relied on various methods, including physical examination, 

mammography, Magnetic Resonance Imaging(MRI)  ,ultrasound, and biopsy. These methods have 

been valuable in diagnosing breast cancer and have saved countless lives. However, they also have 

limitations such as subjectivity, variability, and the need for expert interpretation,(Lu et al., 2019). 
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Mammography is the most widely used screening tool for breast cancer detection. It involves 

taking X-ray images of the breast tissue and analyzing them for abnormalities. While 

mammography has been effective in detecting breast cancer, it may not be as accurate for women 

with dense breast tissue or younger women. Ultrasound, on the other hand, utilizes sound waves 

to create images of the breast and is often used in conjunction with mammography to provide a 

more comprehensive evaluation. 

Magnetic Resonance Imaging (MRI) is a medical imaging method that employs a powerful 

magnetic field and radio waves to create precise images of the body's internal structures. It offers 

a non-invasive means to visualize and evaluate different tissues and organs, assisting in the 

diagnosis and surveillance of a broad spectrum of medical ailments. 

In the process of an MRI scan, the patient reclines on a table, which is then positioned inside a 

sizable cylindrical apparatus. Within this machine, a strong magnet generates a magnetic field 

around the patient's body. Subsequently, radio waves are sent into the body, prompting the atoms 

within to emit signals. The MRI machine captures these signals, and with the aid of a computer, 

creates comprehensive, cross-sectional images that provide detailed visuals of the body's internal 

structures. 

MRI proves especially valuable in visualizing and examining soft tissues like the brain, spinal 

cord, muscles, joints, and internal organs. It provides high-resolution images that can reveal 

abnormalities, such as tumors, inflammation, or structural damage. MRI scans are commonly used 

in various medical specialties, including neurology, orthopedics, cardiology, and oncology, to aid 

in diagnosis, treatment planning, and monitoring of patients. 
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MRI is considered a safe procedure without any known adverse effects; however, it may not be 

appropriate for individuals with specific medical implants or devices that can be affected by 

magnetic fields. The interpretation of MRI images requires expertise from radiologists or other 

qualified healthcare professionals who can accurately analyze the images and provide a diagnosis 

or assessment of the patient's condition,(Yurttakal et al., 2020). 

Additionally, Ultrasound and biopsy techniques face several challenges in detecting  breast cancer. 

These challenges include the occurrence of false negatives and false positives, which can lead to 

misdiagnosis and delayed treatment. The interpretation of ultrasound images and the accuracy of 

biopsies are operator-dependent, making the expertise and experience of the operator critical. The 

variability in lesion appearance poses difficulties in accurately distinguishing between benign and 

malignant lesions based solely on ultrasound imaging. Furthermore, biopsies are invasive 

procedures associated with potential risks and complications, deterring some patients from 

undergoing the necessary diagnostic tests. Limited access to resources and the high cost of 

equipment and specialized personnel further contribute to the challenges in implementing 

ultrasound and biopsy techniques, particularly in resource-limited settings. 

In recent years machine learning techniques have played a significant role in image classification 

tasks, including breast cancer detection.  

Before 2010, traditional approaches to image classification heavily relied on handcrafted feature 

extraction methods for analysis and classification purposes. These approaches involved manually 

designing features, such as texture, shape, or intensity, from the images. Subsequently, 

conventional machine learning algorithms like support vector machines (SVM) or decision trees 

were utilized to classify the extracted features. However, these approaches heavily relied on 

domain knowledge and lacked the ability to learn complex patterns directly from raw images. 
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From 2010 onwards, the rise of deep learning, particularly Convolutional Neural Networks 

(CNNs), brought about a significant transformation in breast cancer detection. This breakthrough 

technology enabled the automatic learning of complex patterns and structures from raw image 

data, leading to remarkable advancements in the field. Unlike traditional approaches, CNNs 

surpassed expectations by eliminating manual feature engineering requirements, making the 

detection process more efficient and accurate. 

Convolutional Neural Networks (CNNs) are a type of deep learning model that has proven to be 

remarkably effective in tasks such as image recognition and computer vision, particularly when 

dealing with visual data. CNNs revolutionized the field by introducing a data-driven approach, 

allowing automatic feature extraction and end-to-end learning directly from raw images. In the 

context of breast cancer detection, CNNs have been extensively applied due to their capability to 

learn hierarchical representations from medical images. Researchers have developed various CNN 

models for different aspects of breast cancer detection, including distinguishing between benign 

and malignant lesions, identifying specific features like microcalcifications or masses, and 

assessing the risk level. Compared to traditional feature-based methods, CNNs have demonstrated 

significantly superior performance,(Zhao et al., 2018). 

A convolutional neural network (CNN) consists of several interconnected layers, including 

convolutional, pooling, and fully connected layers. The convolutional layers play a crucial role in 

extracting pertinent features from the input data using a process called convolution. During 

convolution, a set of learnable filters or kernels is applied to the input image, performing element-

wise multiplication and summation to generate feature maps. These feature maps accentuate 

significant patterns or characteristics in the input image, such as edges, textures, or shapes. 
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Pooling layers follow the convolutional layers and serve to down sample the feature maps, 

reducing their spatial dimensionality while retaining the most salient information. This helps in 

reducing the computational complexity of the model and making it more robust to variations in 

the input. 

The dense layers, also referred to as fully connected layers, have the role of performing the ultimate 

classification or regression tasks. They receive the features extracted by the convolutional and 

pooling layers and are trained to associate them with the desired output classes or values. These 

layers enable the model to grasp intricate relationships within the data and make predictions based 

on the acquired features. 

Convolutional neural networks (CNNs) play a crucial role in breast cancer identification, utilizing 

labeled data to adjust network weights iteratively through backpropagation. This process, 

facilitated by optimization algorithms like stochastic gradient descent (SGD), aims to minimize 

the difference between predicted and actual outputs. CNNs, due to their hierarchical and localized 

architecture, excel in analyzing visual data. Automatic learning and extraction of relevant features 

from raw images empower CNNs to perform tasks such as image classification, object detection, 

image segmentation, and more (Lecun et al., 2015). 

The significance of employing CNNs in breast cancer identification lies in their ability to recognize 

patterns and features within medical images. In this context, the research problem gains relevance 

as existing models often rely on secondary datasets from foreign sources, lacking the specificity 

required for local healthcare systems. CNNs, with their capacity to adapt to distinct data 

distributions and patient demographics, become indispensable tools in developing accurate breast 

cancer prediction models tailored to the unique context of the target population. Consequently, this 

research contributes to addressing the gap in locally trained breast cancer prediction models, 
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emphasizing the importance of leveraging CNNs for enhanced diagnostic capabilities.,(Lecun et 

al., 2015). 

 

1.2 Problem Statement 
 

Various studies have tackled the classification of breast tumors as benign or malignant, yet a 

significant challenge persists: the absence of a breast cancer prediction model trained on local 

datasets. Existing research often relies on secondary datasets from sources like the UCI machine 

learning repository, primarily featuring data from foreign hospitals. This reliance on foreign data 

poses a notable limitation, especially when implementing models within our country's healthcare 

system, exacerbated by the disparities in data distribution and patient demographics between 

foreign and local contexts, (Alanazi et al., 2021).  

To bridge this gap, this study aims to develop a breast cancer prediction model tailored specifically 

to our local datasets. By leveraging locally sourced data, we aim to mitigate the risk of 

misclassification and enhance the model's relevance to our population's characteristics, ultimately 

improving the accuracy and effectiveness of breast cancer detection within our healthcare system. 

Furthermore, we employ data augmentation techniques to bolster our efforts, expanding the size 

and diversity of our dataset. Through the generation of synthetic data points, we enhance the 

model's robustness and its ability to generalize across different cases, addressing the challenge of 

data scarcity and boosting the accuracy and reliability of breast cancer identification within our 

community, (Shorten et al., 2019). 
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1.3 General Objective 
 

This study aims to develop a model that identifies breast cancer tumors using convolution neural 

networks.  

1.4 Specific Objectives  
 

i. To extract features in magnetic resonance images (MRI) that are used in detecting breast 

cancer using CNN. 

ii. To develop a Python based CNN model which classifies between benign and malignant 

breast tissues of our local breast images using a convolutional neural network algorithm.  

iii. To evaluate the  performance of the developed convolutional neural network (CNN) 

model by employing performance metrics such as accuracy and F1 score. 

 

1.5 Research Questions 
 

i. How to extract features in magnetic resonance images (MRI) used to detect breast cancer 

using CNN? 

ii. How can a Python-based Convolutional Neural Network (CNN) model be developed to 

accurately classify between benign and malignant breast tissues in local breast images, 

employing a convolutional neural network algorithm? 

iii. What is the performance of the developed convolutional neural network (CNN) model, as 

assessed through performance metrics such as accuracy and F1 score? 
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1.6 Significance of the Research  
 

Early detection of breast cancer leads to effective treatment outcomes. Therefore, the design of a 

model that can classify benign and malignant tumors in breast cancer would be valuable in the 

academic world. This is because the study has been conducted using datasets (MRI images) from 

our local hospital, Muhimbili National Hospital. 

Moreover, the model developed  in this research holds the promise of enhancing the accuracy of 

tumor classification (malignant and benign) for pathologists. This was achieved by using data 

specifically from our local hospital, Muhimbili National Hospital (MNH). 

Additionally, this research aims to improve breast cancer detection in Tanzania by using 

Convolutional Neural Network (CNN) models on local MRI breast images. The study used an 

experimental design with 30 MRI images, with 8 malignant cases and 22 benign ones. Data 

augmentation techniques were applied to expand the dataset to 1419 images, providing a more 

robust foundation for the CNN model. The model, developed in Python, had multiple layers for 

accurate identification, achieving an accuracy of 96.4% and an F1 score of 96%. The model 

demonstrated robust feature extraction and classification capabilities, indicating its reliability and 

potential for clinical application. Further research and validation using larger datasets and diverse 

populations would be beneficial. This research contributes to the field of breast cancer detection 

by offering an efficient approach for early identification using CNNs. 
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CHAPTER TWO 

2 LITERATURE REVIEW 
2.1 Overview 
 

In this chapter, literature review of the study is discussed. Firstly, the concept of breast cancer and 

its early symptoms is presented. Secondly, Convolutional Neural networks algorithms in breast 

cancer identification is discussed. Finally, the conceptual framework illustration and knowledge 

gap has been presented.  

2.2 Breast cancer 
 

Breast cancer is a form of cancer that originates in the breast cells. It develops when irregular cells 

within the breast undergo uncontrolled growth and division, giving rise to a tumor. These 

cancerous cells have the potential to infiltrate neighboring tissues and metastasize to distant parts 

of the body through the bloodstream or lymphatic system as shown in Figure 2.1. 

Breast cancer is commonly identified by the existence of a new lump or growth, but it's crucial to 

understand that most breast lumps are not cancerous. These growths can be categorized as either 

benign or malignant. Benign tumors are non-cancerous, whereas malignant tumors are cancerous. 

Moreover, the main differentiation between benign and malignant tumors lies in their shape: 

benign tumors tend to have a round or oval shape, while malignant tumors display a somewhat 

rounded shape with an irregular boundary. Furthermore, malignant masses appear brighter in 

colour compared to the surrounding tissue (Ragab et al., 2019). 
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Figure 2.1 Normal breast tissue and abnormal breast tissue (American Cancer Society, 2014) 

  

2.3 Convolutional Neural Networks (CNN) 

 Convolutional neural networks (CNN) belong to the class of deep learning neural networks. In 

essence, CNN is a machine learning algorithm capable of taking an input image and assigning 

importance (through learnable weights and biases) to various aspects or objects within the image, 

allowing it to distinguish between them. CNN achieves this by extracting relevant features from 

the images. A typical CNN structure comprises several components, including the input layer, 

which handles grayscale images, and the output layer, responsible for binary or multi-class labels. 

It also incorporates hidden layers, which consist of convolutional layers, ReLU (rectified linear 

unit) layers, pooling layers, and a fully connected Neural Network as shown in Figure 2.2, (Ragab 

et al., 2019).  

Convolutional Layer: The convolutional layer applies a set of learnable filters (also known as 

kernels) to the input image. Each filter convolves over the image, performing element-wise 

multiplications and summing the results to produce a feature map. This layer helps in detecting 

local patterns and features by capturing spatial information in the image. 

Activation Layer: The activation layer brings non-linearity to the CNN by applying an activation 

function, such as the Rectified Linear Unit (ReLU), to the feature map derived from the 
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convolutional layer. This introduction of non-linearity allows the model to capture complex 

relationships between features and enhance its ability to handle more intricate patterns in the data. 

Pooling Layer: The pooling layer reduces the spatial dimensions of the feature maps through 

down sampling. This down sampling is beneficial in controlling computational complexity and 

mitigating overfitting. The widely used technique in pooling is max pooling, wherein a defined 

window selects the maximum value as the representative value. 

Fully Connected Layer: The role of the fully connected layer is to generate predictions based on 

the extracted features. It takes the output from the previous layers and applies matrix multiplication 

with learnable weights. This layer enables the model to learn complex combinations of features 

and make high-level predictions. 

 

 

Figure 2.2: The typical CNN architecture( Al-Zuhairi et el,2019) 

Convolutional Neural Networks (CNNs) have showed to be highly effective and outperform other 

classification algorithms. The unique architecture of CNNs makes them particularly suitable for 

processing images and extracting relevant features.  

CNNs are preferred over other classification algorithms in different image classification tasks due 

to the following; - 
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Convolutional Neural Networks (CNNs) excel at capturing spatial relationships: In contrast to 

conventional machine learning algorithms such as Random Forest and Support Vector Machine 

(SVM), CNNs take advantage of the spatial relationships present in images. They use 

convolutional layers that apply filters to small portions of the image, allowing them to detect local 

patterns and features. This capability is crucial for accurately classifying objects in images. 

In a study conducted by Krizhevsky et al. (2012), CNNs demonstrated exceptional performance in 

image classification tasks. The researchers trained a deep CNN architecture called AlexNet on the 

ImageNet dataset, which consists of millions of labeled images from various categories. The 

AlexNet achieved a significant reduction in error rate, surpassing traditional machine learning 

algorithms. This study solidified the dominance of CNNs in image classification tasks (Krizhevsky 

et al., 2012). 

Moreover, CNNs possess the capability to automatically learn hierarchical features. This is a 

significant advantage, as they can extract low-level features like edges, textures, and shapes 

through multiple layers of convolution and pooling operations. These extracted low-level features 

are then combined to create higher-level features that are more discriminative and useful for 

accurate classification. 

The hierarchical and localized nature of CNNs makes them particularly well-suited for analyzing 

visual data. By automatically learning and extracting pertinent features from raw images, CNNs 

gain the ability to undertake tasks like image classification, object detection, image segmentation, 

and other related functions,(Lecun et al., 2015). 

Furthermore, CNNs can leverage data augmentation techniques to enhance their performance. 

Data augmentation entails the application of random transformations, such as rotations, 
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translations, and flips, to the training images. By augmenting the training data, CNNs become 

more resilient to variations in the input images, resulting in improved generalization and better 

classification accuracy. 

2.4 Magnetic Resonance Imaging (MRI) 

Magnetic Resonance Imaging (MRI) is a medical imaging method that employs a powerful 

magnetic field and radio waves to create detailed images of the body's internal structures. It is 

extensively utilized in clinical settings to diagnose and monitor various medical conditions, such 

as brain disorders, musculoskeletal injuries, and breast cancer.(Khooa et al., 1997). 

2.5 Data augmentation 

Data augmentation is a deep learning technique that involves applying various transformations to 

the existing training dataset to artificially increase its size and diversity. The primary objective of 

data augmentation is to enhance the model's generalization ability, robustness, and overall 

performance by exposing it to a broader range of variations and patterns present in the training 

data, (Wang & Perez, n.d.).  

The most commonly augmentations techniques used are: - 

Image flipping and rotation: Images can be horizontally or vertically flipped to create new 

variations of the original image. Additionally, rotating images at different angles can provide 

additional training samples. These techniques assist the model to recognize objects from different 

orientations. 

Image scaling and cropping: Scaling an image to different sizes or cropping it at various locations 

can simulate different viewpoints or zoom levels. This allows the model to handle variations in 

object size and position. 
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Image translation: Shifting an image in different directions can create new samples with variations 

in object location. This helps the model become more invariant to translation and improves its 

ability to recognize objects in different positions. 

Image shearing and skewing: Applying shearing or skewing transformations to images can 

introduce deformations and changes in perspective. These transformations can enhance the model's 

ability to handle distorted or perspective-shifted objects, (Shorten & Khoshgoftaar, 2019). 

A list of previous works to identify breast cancer using convolutional neural networks conducted 

by different scholars are summarized in Table 2.1. 

Table: 2.1: Related works 

RESEARCH TITLE DATA 
ANALYSIS 
TOOL  

DATASETS 
USED  

EVALUATION RESEARCH GAP  

Yurttakal, A., 
Akpolat, T., & 
Arslan, A. (2020). 
Detection of Breast 
Cancer via Deep 
Convolution Neural 
Networks Using 
MRI Images. 
Journal of Medical 
Imaging and Health 
Informatics, 10(9), 
2160-2166. 

MATLAB 
environment 

Breast MRI 
images of 
200 Cases 
among 
them, 98 are 
benign and 
102 
malignant 
from 
(Turkey) 
 

sensitivity, 
specificity, 
precision, F1 
Score, False 
Negative Rate, 
False Discovery 
Rate, False 
Positive Rate, 
Negative 
Predictive Value 
and Classification 
Accuracy, 

The research gap in this 
paper revolves around the 
need for larger, more diverse 
datasets and additional 
validation studies to enhance 
the generalizability and 
reliability of the CNN model 
for breast cancer detection 
using MRI images. 

Zuluaga-Gomez, A., 
Lopez, J. A., & 
Ramirez, J. (2021). 
A CNN-Based 
Methodology for 
Breast Cancer 
Diagnosis Using 
Thermal Images. 
Journal of Medical 
Imaging and Health 
Informatics, 11(5), 
1260-1267. 

Python 1120 
thermal 
images from 
DMR-IR 
Database  
(UK) 

accuracy, 
precision, 
sensitivity, F1-
score and ROC-
AUC 

Breast cancer characteristics 
and patient populations can 
vary significantly across 
different regions and 
healthcare systems. 
Therefore, training a CNN 
model on thermal images 
from a single database may 
not adequately capture the 
variability present in real-
world clinical settings. To 
address this gap, future 
research could benefit from 
incorporating thermal images 
from multiple sources or 
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conducting multi-center 
studies to ensure the 
robustness and applicability 
of the developed 
methodology across diverse 
populations. 

 
Alanazi, A., 
AlRubaian, M., & 
AlShammari, R. 
(2021). Boosting 
Breast Cancer 
Detection Using 
Convolutional 
Neural Network. 
Journal of Medical 
Imaging and Health 
Informatics, 11(8), 
2350-2356. 

Python 275,000, 50 
×50-pixel 
RGB image 
patches from 
Kaggle  

accuracy, 
precision, 
sensitivity 

The research gap in the study 
lies in the lack of specificity 
regarding the origin and 
representativeness of the 
dataset, making it 
challenging to assess the 
extent to which the trained 
CNN model can be 
generalized to real-world 
scenarios, particularly within 
the context of the local 
healthcare system where it is 
intended to be applied. 
Moreover, potential issues 
related to data bias, 
imbalance, and quality within 
the Kaggle dataset could 
impact the performance and 
reliability of the trained 
model. Thus, future research 
could address these 
limitations by utilizing more 
curated and well-documented 
datasets specifically tailored 
to the target population, 
thereby enhancing the 
applicability and 
effectiveness of the 
developed CNN model for 
breast cancer detection. 

Ragab, Y., Attallah, 
O., & El-Fishawy, 
N. (2019). Breast 
cancer detection 
using deep 
convolutional neural 
networks and 
Support Vector 
Machines. IEEE 
Access, 7, 53168-
53175. 

MATLAB The digital 
database for 
screening 
mammograp
hy (DDSM) 
dataset 
consists of 
2,620 cases 
and the 
Curated 
Breast 
Imaging 
Subset of 
DDSM 
(CBIS-

Accuracy, 
sensitivity, 
specificity Area 
under the curve, 
F1-score 

The research gap in this 
study lies in the reliance on 
standardized datasets, 
specifically the digital 
database for screening 
mammography (DDSM) 
dataset and its subset, the 
Curated Breast Imaging 
Subset of DDSM (CBIS-
DDSM). While these datasets 
are widely used in breast 
cancer research, they may 
not fully capture the diversity 
of patient populations and 
imaging practices 
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DDSM) 
datasets 
contains 753 
micro 
calcification 
cases and 
891 mass 
cases 

encountered in clinical 
settings. Therefore, there is a 
need for research that utilizes 
more diverse and 
representative datasets, 
possibly including data from 
multiple healthcare 
institutions or regions, to 
enhance the generalizability 
and applicability of deep 
convolutional neural 
networks (CNNs) and 
Support Vector Machines 
(SVMs) for breast cancer 
detection across different 
patient demographics and 
imaging protocols 

Fonseca, J. F., 
Carneiro, G., Aridas, 
C. K., & Marcomini, 
K. D. (2015). 
Automatic Breast 
Density 
Classification Using 
a Convolutional 
Neural Network 
Architecture Search 
Procedure. 

C 
programming 
language 
using the 
Open MP 
library 

94 
mammogra
ms datasets 
from two 
medical 
centers in 
Lima, Peru 

Accuracy The research gap in the study 
conducted by Fonseca et al. 
(2015) lies in the limited 
scope of the dataset used for 
training the convolutional 
neural network (CNN) 
model. While the study 
utilizes mammogram datasets 
from two medical centers in 
Lima, Peru, totaling 94 cases, 
the dataset may not fully 
capture the diversity and 
variability present in breast 
cancer cases across different 
populations. The lack of a 
more comprehensive and 
representative dataset from a 
broader demographic range 
hinders the generalizability 
and applicability of the 
developed CNN model. 
Consequently, there is a need 
for research that incorporates 
larger and more diverse 
datasets to improve the 
accuracy and robustness of 
breast density classification 
models, ensuring their 
effectiveness across various 
patient populations and 
healthcare settings. 

Yue, Z., Fan, Y., 
Zhang, Y., Wang, 
S., Li, Y., & Zhang, 

 WBCD 
dataset 

Classification 
accuracy 

The research gap in Yue et 
al.'s (2018) study lies in the 
focus on utilizing the 
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Z. (2018). Machine 
Learning with 
Applications in 
Breast Cancer 
Diagnosis and 
Prognosis. Journal 
of Healthcare 
Engineering, 2018, 
1-6.  

Wisconsin Breast Cancer 
Dataset (WBCD) for breast 
cancer diagnosis and 
prognosis without addressing 
the potential limitations of 
using a single dataset for 
training and evaluation. 
While classification accuracy 
is reported as an outcome 
measure, the study lacks 
consideration of the dataset's 
representativeness and 
generalizability to diverse 
patient populations. 
Additionally, there is a need 
for further investigation into 
the robustness of the machine 
learning models developed 
using the WBCD dataset 
when applied to real-world 
clinical settings with varying 
data distributions and patient 
demographics. Therefore, 
future research should aim to 
validate the findings using 
multiple datasets from 
different sources to ensure 
the reliability and 
applicability of the 
developed models in clinical 
practice. 

Eroğlu, O., Karacan, 
A., Ceylan, H., 
Kocatürk, T., & 
Arslan, A. (2021). 
Convolutional 
Neural Networks 
based Classification 
of Breast 
Ultrasonography 
Images by Hybrid 
Method with respect 
to Benign, 
Malignant, and 
Normal. Journal of 
Healthcare 
Engineering, 2021, 
1-14. 

MATLAB 
2019b 
environment 

780 breast 
ultrasound 
images () in 
png format 
in which 437 
are benign, 
210 
malignant, 
133 normal 
images 
collected 
from. This 
data set was 
obtained at 
Behaye 
hospital 
(Europe 
PMC site) 

Accuracy, AUC The research gap in the paper 
by Eroğlu et al. (2021) lies in 
the limited scope of the 
dataset used for training and 
evaluation. While the study 
employs breast ultrasound 
images collected from a 
single source, Behaye 
Hospital, the dataset may not 
fully capture the diversity 
and variability present in 
broader patient populations. 
Additionally, the study does 
not address potential biases 
or limitations associated with 
the specific hospital setting, 
patient demographics, or 
imaging protocols. 
Therefore, there is a need for 
further research that 
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incorporates larger and more 
diverse datasets, potentially 
sourced from multiple 
healthcare institutions, to 
enhance the generalizability 
and robustness of the 
developed convolutional 
neural network (CNN) 
models for breast cancer 
classification using 
ultrasound images. 

Al-Haija, A. M., & 
Adebanjo, A. T. 
(2020). Breast 
Cancer Diagnosis in 
Histopathological 
Images using 
Resnet-50 
Convolutional 
Neural Network. 
Journal of Medical 
Imaging and Health 
Informatics, 10(12), 
2875-2882. 

Python 3.7 𝐵𝑟𝑒𝑎𝑘𝐻𝑖𝑠 
dataset 
composed 
9,109 
microscopic 
images of 
breast tumor 
tissue 
collected 
from 82 
patients, it 
contains 
2,480 
benign and 
5,429 
malignant 
samples 
(700X460 
pixels, 3-
channel 
RGB, 8-bit 
depth in 
each 
channel, 
PNG 
format) 

accuracy The research gap in the study 
by Al-Haija and Adebanjo 
(2020) lies in the limited 
diversity and 
representativeness of the 
dataset used for training the 
breast cancer diagnosis 
model. While the BreastHist 
dataset consists of a 
substantial number of 
histopathological images, all 
samples are collected from a 
single source, potentially 
leading to biases and 
limitations in the model's 
generalizability. The dataset's 
exclusivity to a specific 
patient population or 
healthcare institution may 
not adequately capture the 
full spectrum of breast tumor 
tissue variations, histological 
characteristics, and patient 
demographics present in 
broader clinical settings. 
Consequently, there is a need 
for research that incorporates 
more diverse and 
comprehensive datasets 
encompassing a wider range 
of tumor types, tissue 
structures, and patient 
populations to enhance the 
robustness and applicability 
of breast cancer diagnosis 
models trained using 
convolutional neural 
networks. 

Zhao, H., Shi, J., Qi, 
X., Wang, X., & Jia, 

Python 122 digital 
mammogra

Accuracy The research gap in Zhao et 
al.'s (2018) paper lies in the 
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J. (2018). 
Classification of 
Benign and 
Malignant Breast 
Mass in Digital 
Mammograms with 
Convolutional 
Neural Networks. 
ISICDM 2018: 
Proceedings of the 
2nd International 
Symposium on 
Image Computing 
and Digital 
Medicine, October 
2018, pp. 47–50. 

m images in 
which 54 
malignant 
cases and 68 
benign cases 
downloaded 
from the 
Mammogra
phy Image 
Analysis 
Society 
(MIAS) 
database 

limited size and diversity of 
the dataset used for training 
the convolutional neural 
networks (CNNs) for 
classifying benign and 
malignant breast masses in 
digital mammograms. While 
the utilization of digital 
mammogram images from 
the Mammography Image 
Analysis Society (MIAS) 
database is a valid approach, 
the dataset consists of only 
122 images, with 54 
classified as malignant and 
68 as benign. This small 
dataset size may not fully 
capture the variability and 
complexity of real-world 
mammogram images, 
potentially limiting the 
generalizability and 
robustness of the CNN 
models developed. 
Therefore, there is a need for 
future research to explore 
larger and more diverse 
datasets to enhance the 
accuracy and reliability of 
breast cancer classification 
using CNNs in digital 
mammograms. 

 
Lu, H., Zhang, Y., 
Cao, S., & Zhu, Q. 
(2019). The 
Classification of 
Mammogram using 
Convolutional 
Neural Network 
with Specific Image 
Preprocessing for 
Breast Cancer 
Detection. Journal of 
Medical Systems, 
43(8), 234. 

MATLAB 
environment 

A total of 
2363 
examinees 
with BI-
RADS 0, 1, 
2, 3, 4, and 5 
were 
collected 
from a 
teaching 
hospital in 
Taiwan and 
9927 images 
with 
resolution 
2294*1914 
were 
obtained 

Accuracy, 
sensitivity, 
specificity, and 
F1 score 

The research gap in Lu et 
al.'s (2019) study lies in the 
absence of validation and 
evaluation using diverse 
datasets from multiple 
healthcare settings or 
geographical regions. While 
the study employs a dataset 
collected from a teaching 
hospital in Taiwan, it is 
essential to assess the 
generalizability of the 
developed convolutional 
neural network (CNN) model 
across different patient 
populations and healthcare 
systems. Validation using 
datasets from various sources 
would provide insights into 
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the model's robustness and 
effectiveness in different 
clinical contexts, thus 
enhancing its applicability 
and reliability in real-world 
breast cancer detection 
scenarios. 

 

Table 2.1 presents literature review on various studies related to detection and diagnosis of breast 

cancer using deep learning techniques. The studies utilize different data analysis tools, datasets 

and evaluation metrics. 

Yurttakal  et al.,(2020) conducted a study with the goal of early breast cancer detection through 

the application of MRI images and deep convolutional neural networks (CNNs). They achieved 

successful differentiation between benign and malignant tumors using a dataset of 200 breast MRI 

images from Turkey. 

Zuluaga-Gomez et al., (2021) focused on developing a CNN-based computer-aided diagnosis 

system for breast cancer using thermal images. The study demonstrated the superiority of CNNs 

over other techniques using a dataset of 1120 thermal images from the DMR-IR Database (UK). 

However, the identified gap is the usage of datasets from abroad, suggesting the potential use of 

local datasets. 

Alanazi et al.,(2021) aimed to classify IDC-positive and negative cases and compared performance 

with other machine learning models using Python. The research used a dataset of 275,000 RGB 

image patches from Kaggle. The gap identified was the reliance on secondary datasets from 

Kaggle, suggesting the exploration of local hospital datasets. 

Ragab et al., (2019) examined the process of identifying masses and distinguishing between benign 

and malignant tissues in mammograms by employing a combination of Deep Convolutional Neural 
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Networks (DCNN) for extracting features and Support Vector Machine (SVM) for classification. 

The experimentation was carried out using MATLAB. The study utilized data from two sources: 

the digital database for screening mammography (DDSM) and the Curated Breast Imaging Subset 

of DDSM (CBIS-DDSM).  

Fonseca et al., (2015) focused on automatic breast density classification using a CNN architecture 

search procedure in C programming language. The research employed 94 mammograms datasets 

from two medical centers. However, the absence of a more comprehensive and representative 

dataset from a broader demographic range undermines the generalizability and applicability of the 

developed CNN model. Therefore, there is a need for further research that incorporates larger and 

more diverse datasets to enhance the accuracy and robustness of breast density classification 

models, ensuring their effectiveness across various patient populations and healthcare settings. 

Yue et al.(2018) conducted a review of various ML techniques' applications in breast cancer 

diagnosis and prognosis using the WBCD dataset. Additionally, there is a need for further 

investigation into the robustness of the machine learning models developed using the WBCD 

dataset when applied to real-world clinical settings with varying data distributions and patient 

demographics. Therefore, future research should aim to validate the findings using multiple 

datasets from different sources to ensure the reliability and applicability of the developed models 

in clinical practice. 

Eroğlu et al. (2021) developed a hybrid-based CNN system to classify breast cancer lesions into 

three categories: benign, malignant, or normal. using MATLAB. The research utilized 780 breast 

ultrasound images from Behaye hospital (Europe PMC site). However, the research gap in this 

study lies in the limited scope of the dataset used for training and evaluation. While the study 

employs breast ultrasound images collected from a single source, Behaye Hospital, the dataset may 
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not fully capture the diversity and variability present in broader patient populations. Additionally, 

the study does not address potential biases or limitations associated with the specific hospital 

setting, patient demographics, or imaging protocols. Therefore, there is a need for further research 

that incorporates larger and more diverse datasets, potentially sourced from multiple healthcare 

institutions, to enhance the generalizability and robustness of the developed convolutional neural 

network (CNN) models for breast cancer classification using ultrasound images. 

Al-Haija & Adebanjo (2020) investigated breast cancer analysis in histopathological images using 

the Resnet-50 CNN model in Python. The research employed the Breast Histology dataset. 

Additionally, there is a need for research that incorporates more diverse and comprehensive 

datasets encompassing a wider range of tumor types, tissue structures, and patient populations to 

enhance the robustness and applicability of breast cancer diagnosis models trained using 

convolutional neural networks. 

Zhao et al., (2018) performed experimental comparisons in Python between CNN-based and SVM-

based classifiers to classify benign and malignant cases. The study used 122 digital mammogram 

images from the MIAS database. The research gap in this study lies in the limited size and diversity 

of the dataset used for training the convolutional neural networks (CNNs) for classifying benign 

and malignant breast masses in digital mammograms. While the utilization of digital mammogram 

images from the Mammography Image Analysis Society (MIAS) database is a valid approach, the 

dataset consists of only 122 images, with 54 classified as malignant and 68 as benign. This small 

dataset size may not fully capture the variability and complexity of real-world mammogram 

images, potentially limiting the generalizability and robustness of the CNN models developed. 

Lu et al. (2019) developed an aiding system for breast cancer detection and staging using 

MATLAB. The study employed a dataset of 2363 examinees from a hospital in Taiwan. The 
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research gap in this study lies in the absence of validation and evaluation using diverse datasets 

from multiple healthcare settings or geographical regions. While the study employs a dataset 

collected from a teaching hospital in Taiwan, it is essential to assess the generalizability of the 

developed convolutional neural network (CNN) model across different patient populations and 

healthcare systems. Validation using datasets from various sources would provide insights into the 

model's robustness and effectiveness in different clinical contexts, thus enhancing its applicability 

and reliability in real-world breast cancer detection scenarios. 

 

2.6 Research Gaps 

Several researches have been conducted to predict breast cancer. For example, Yurttakal et al. 

(2020) developed a CNN model using pixel information in MATLAB, utilizing datasets from the 

UCI machine learning repository with varying training and testing data sizes. However, many of 

these studies relied on secondary data from foreign sources, such as the UCI machine learning 

repository. In order to address this limitation and provide a more suitable model for breast cancer 

identification, particularly in our country, this study aims to apply a CNN algorithm using Python. 

The study will utilize secondary data in the form of MRI images from our local hospital, 

specifically Muhimbili National Hospital (MNH). By using these datasets, the study aims to 

accurately classify malignant and benign tumors, thereby improving breast cancer detection in our 

country. Additionally, the implementation of the model has been carried out in Python, a widely 

used programming language in the field of data science. Python is renowned for its extensive 

collection of valuable libraries that cater to scientific computing and machine learning tasks. 
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2.7 The conceptual framework 
 

The conceptual framework illustrated in Figure 2.3 depicts the process of training a developed 

Convolutional Neural Network (CNN) model to predict whether a tumor is benign or malignant 

using data from the MNH Breast Cancer dataset. The dataset serves as the primary data source, 

containing MRI images of breast tumors. These images undergo pre-processing, including 

standardization, and resizing, before feature extraction. Features extracted from the images, such 

as radius, perimeter, texture, area, smoothness, edges, and shapes of tumors, serve as independent 

variables for training the CNN model. The developed CNN model learns from the training datasets 

and is subsequently evaluated using validation datasets to assess its generalization to unseen data. 

The dependent variable, the predicted result of whether the tumor is benign or malignant, is 

determined by the CNN model, which is then used to make predictions on new data. This 

framework outlines the essential steps in utilizing CNNs for breast cancer prediction, starting from 

data collection to model development and deployment. 

 

Figure 2.3: The conceptual framework of the study (Ramadhani,2024). 
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CHAPTER THREE 

3 RESEARCH METHODOLOGY 
3.1 Overview  

An experimental study design has been adopted. Experimental research design act as a de facto 

research design in modelling machine learning problems, (Kamiri & Mariga, 2021).  

This chapter provides a comprehensive overview of the CNN model developed as part of this 

research, focusing on image processing  and model architecture. The chapter begins with a detailed 

explanation of the image augmentation methods and algorithm employed, shedding light on the 

details of segmenting MRI images for accurate analysis. Additionally, the chapter delves into the 

datasets utilized in the study, explaining the process of dataset selection, training, validation, and 

testing. By thoroughly explaining the dataset handling procedures, readers gain insight into the 

rigorous evaluation process employed to ensure the model's accuracy and reliability. 

 

In Figure 3.1, a CNN  model for breast cancer classification is illustrated. The model begins with 

image pre-processing, where medical images of breast tissue undergo resizing, pixel intensity 

normalization, and format conversion to prepare them for the deep learning model. Subsequently, 

the pre-processed images are fed into the model for feature extraction, which involves capturing 

numerical representations of crucial characteristics like shape, texture, and intensity. These 

extracted features are then used to train a classification model, Once trained, the model can predict 

the likelihood of breast tissue being benign or malignant when presented with new breast MRI 

images.  
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Figure: 3.1  Developed CNN model architecture (Ramadhani,2024) 

 

3.2 Study population and sample size 
 

The research sample comprises 30 MRI images from patients who received breast cancer 

screenings at Muhimbili National Hospital (MNH).The patient's MRI images included in the study 

were 8 for malignant and 22 for benign images. Furthermore, the images were augmented to 1419 

images includes 719 benign and 700 malignant image using different augmentation techniques, 

such as shearing, flipping, rotation, cropping, and shifting. 

3.3 Area of study 
 

Muhimbili National Hospital (MNH), located in Dar es salaam , serves as the primary research site 

for this study. The hospital was chosen due to its significance as a leading healthcare institution in 

the region, providing access to a substantial number of breast cancer cases. Conducting the 

research in this setting ensures that the findings are relevant to the local context and can contribute 

to improving breast cancer detection and treatment in the area. 
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3.4 Hardware and Software   
 

The model was developed using MacBook Pro 2019 which offers powerful specifications 

including a 16-inch Retina display, 2.3 GHz 8-Core Intel Core i9 processor, AMD Radeon Pro 

5500M graphics, and 16 GB of DDR4 memory, provides an ideal platform for developing CNN 

model with Python, offering efficient processing, graphics rendering, and multitasking 

capabilities. 

3.5 Ethical Consideration  
 

The study observed ethical issues and the images was anonymized and all necessary ethical 

considerations was taken into considerations to ensure patient privacy and confidentiality. 

Therefore, before conducting this study the permission was obtained from Research and 

Publication Centre at Muhimbili National Hospital.  

3.6 Research Design 
 

In this study, an experimental research design was employed to address the gap in breast cancer 

detection in Tanzania by leveraging Convolutional Neural Networks (CNNs) on local MRI breast 

images sourced from Muhimbili National Hospital. The dataset initially comprised 30 MRI 

images, with 8 malignant and 22 benign cases, acknowledging the challenge of data scarcity. To 

mitigate this limitation and the risk of overfitting, data augmentation techniques such as rotation, 

shifting, flipping, and shearing were applied using Python, resulting in a dataset expansion to 1419 

images, encompassing 700 benign and 719 malignant cases. The developed CNN model, 

implemented in Python, featured multiple layers including Conv2D layers for feature extraction, 

MaxPooling2D layers for enhancing feature capture, and Dense layers for classification. The 

dataset was divided into training (50%), validation (40%), and testing (10%) sets. The model 
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demonstrated strong performance metrics, achieving an accuracy of 96.4% and an F1 score of 

96%, indicating its efficacy in accurately identifying breast cancer cases. 

 

3.7 Data Preprocessing  

The study utilized a dataset consisting of 30 MRI images of breast tumors in DICOM (Digital 

Imaging and Communications in Medicine) format. DICOM is a standard file format used for 

storing, exchanging, and transmitting medical images and related information in the healthcare 

industry. It is widely used in medical imaging modalities such as X-rays, MRIs, CT scans, 

ultrasounds, and more. The 30 MRI images consisted of 8 malignant and 22 benign cases, then 

these images were then converted to png format using HOROS software as shown in Figure 3.2. 

Horos is a no-cost, openly accessible software designed for viewing medical images. It utilizes 

OsiriXTM and various other open-source medical imaging libraries as its foundation.  

 

Figure 3.2: DICOM files format conversion to png format. 
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3.8  Image Augmentation 

To enhance the dataset and increase its size, data augmentation techniques were applied. Various 

augmentation methods such as  shearing, cropping, rotation, flipping and shifting were used to 

generate a total of 1419 MRI images as shown in Figure 3.3. The augmented dataset includes 700 

malignant and 719 benign cases, providing a more extensive and diverse dataset for training and 

evaluation, as shown in Figures 3.5 and 3.6. 

 

Figure 3.3: Data augmentation techniques (Ramadhani,2024). 

3.8.1 Image Rotation  

This technique involves rotating an image by a certain angle. It assists the model become 

more robust to variations in object orientations. 

3.8.2 Image Flipping  

Modifying an image by flipping it either horizontally or vertically is an uncomplicated 

augmentation method, which effectively enhances the diversity of the dataset.  
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3.8.3 Image Shearing  

Image shearing involves shifting the pixels in a particular direction, giving the image a 

skewed appearance.  

 

3.8.4 Image Shifting  

Shifting an image involves moving the pixels horizontally or vertically by a certain 

distance. It can help the model become more robust to object translations or changes in 

position.  

 

Figure 3.4: Code snippet for data augmentation techniques used (Ramadhani,2024). 

 

Figure 3.4 shows the code snippet detailing the data augmentation parameters utilized in this study 

via the ImageDataGenerator class from the Keras library. The  parameters and libraries employed 

are explained, along with their respective purposes :- 
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• TensorFlow: TensorFlow stands as an open-source platform for machine learning. In this 

case, we are using the TensorFlow library's submodule tensorflow.keras for deep learning 

tasks, particularly related to image processing and computer vision. 

• ImageDataGenerator: This is a class from tensorflow.keras.preprocessing.image is 

used for data augmentation and pre-processing of images. It permits the creation of 

augmented renditions of images through the application of different changes like rotation, 

scaling, flipping, and more. This technique is widely employed to enhance the variety and 

amount of training data available. 

• array_to_img and img_to_array: These functions, also from 

tensorflow.keras.preprocessing.image, are used to convert between image data formats. 

array_to_img converts a NumPy array representation of an image to a PIL Image object, 

while img_to_array converts a PIL Image object to a NumPy array. 

• load_img: This is another function from tensorflow.keras.preprocessing.image, 

load_img is used to load an image file from a given path as a PIL Image object. It is often 

used to read image files before further processing or augmentation. 

• os: The os module is an intrinsic part of Python and serves the purpose of communicating 

with the operating system. Its primary function is to handle various operations related to 

files and directories, encompassing actions such as file listing, directory creation, and path 

manipulation. In this code excerpt, it is probably utilized to interface with the file system 

and gain access to image files. 

• PIL: PIL (Python Imaging Library) is a popularly employed library utilized for accessing, 

editing, and storing a wide range of image file formats. In this code, the PIL module is 

imported to facilitate working with PIL Image objects. 
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• Rotation_range: It specifies the range of random rotations that can be applied to the 

images. In this case, the images were rotated up to 20 degrees in either clockwise or 

counterclockwise direction. 

• Width_shift_range and height_shift_range: These parameters define the extent of 

random horizontal and vertical shifts that can be employed on the images. A value of 0.2 

implies that the images can undergo horizontal and vertical shifting of up to 20% of the 

image's width and height, respectively. 

• Shear_range: It determines the range of random shearing transformations that can be 

applied to the images. A shear transformation shifts the position of pixels along a certain 

direction. In this study, the images were sheared by a maximum of 20% in any direction. 

• Zoom_range: This parameter determines the extent of random zooming applicable to the 

images. Zooming refers to altering the image's scale, and in this instance, the images were 

subjected to a maximum zoom of 20%, either zoomed in or out. 

• Horizontal_flip: It specifies whether random horizontal flips should be applied to the 

images. Enabling this parameter means that some of the images were  horizontally flipped. 

• Fill_mode: It determines how to fill in the pixels that may appear after applying 

transformations such as shifting or rotation. The 'nearest' mode fills in any empty areas 

with the nearest available pixel value. 
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Figure 3.5: Benign sample Images after augmentations (Ramadhani,2024). 

 

Figure 3.6: Augmented malignant sample images (Ramadhani,2024). 
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3.9 Model development  process  
 

The model was developed  using Python 3.0 in Jupiter notebook 2.7. and the following were 

the stages involved :-,  

 

3.9.1 First, Importing all required libraries into Jupiter notebook. 
 

 

Figure 3.7: Python libraries imported to be used (Ramadhani,2024). 

Description of the imported libraries in Figure 3.7  are as follows: - 
  

• cv2: OpenCV, an open-source computer vision library, is employed to perform 

various tasks related to computer vision and image processing. Within this library, 

the cv2 module offers functions that enable the reading, manipulation, and 

visualization of images. 

• matplotlib.pyplot (imported as plt): Matplotlib serves as a Python library used for 

creating plots and visualizations. The pyplot module within Matplotlib offers a 

straightforward interface to design and customize diverse types of plots and visual 

elements. 

• numpy (imported as np): NumPy is a library for numerical computing in Python. It 

provides support for large, multi-dimensional arrays and a collection of 

mathematical functions to operate on these arrays efficiently. 
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• tensorflow.keras.models.Sequential: The Sequential class in the 

tensorflow.keras.models module is a linear stack of layers. It is used to build a 

sequential model, where each layer is added one after the other. 

• tensorflow.keras.layers: This contains various types of layers that can be added to 

a neural network model. The imported layers include Conv2D (convolutional 

layer), MaxPooling2D (max pooling layer), Dense (fully connected layer), Flatten 

(flattening layer), and Dropout (dropout layer). 

• tensorflow.keras.regularizers: The tensorflow.keras.regularizers module provides 

regularizers that can be used to apply penalties on layer parameters during model 

optimization. Regularizers aid in mitigating overfitting by introducing an additional 

term to the loss function, which serves as a penalty. 

• tensorflow.keras.callbacks.EarlyStopping: The EarlyStopping callback is used to 

stop training the model if a monitored quantity (e.g., validation loss) does not 

improve for a specified number of epochs. This prevents overfitting and allows 

early termination of training. 

 

 

3.9.2 Second, loading image datasets into Jupiter notebook and encoding 
 

This stage was accomplished using a TensorFlow library known as 

image_datasets_from_directory. This library helps to load image datasets that are in 

subfolders with two class (in this study was malignant and benign) and provide labels to 

the existing class where by one class labeled as 0 and another class labeled as 1. Also, the 

library supports the images in jpeg, png, bmp, gif formats and reshapes them into the size 
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of 256X256 pixels and divide the datasets into 32 batch size as shown in Figure 4.7 and 

Figure 4.8. 

                     

Figure 3.8: Image datasets loaded to Jupyter notebook from data directory consists of two 
subdirectories (Benign and Malignant)  (Ramadhani,2024). 

 

 

Figure 3.9: Labeled images (0 for Benign images and 1 for Malignant) (Ramadhani,2024). 
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3.9.3 Third, dividing the datasets into training, validation, and test sets. 
 

The datasets were divided into three parts: training, validation, and testing. Specifically, 

50% of the images were allocated for training, 40% for validation, and the remaining 10% 

for testing purposes Additionally, dividing the datasets into training, validation, and test 

sets serves multiple purposes. Firstly, it helps in assessing the performance of the model 

during training by providing a separate set of data for validation, which aids in tuning 

hyperparameters and preventing overfitting. Secondly, the test set allows for the final 

evaluation of the model's performance on unseen data, providing an unbiased assessment 

of its generalization ability. By allocating 50% of the images for training, 40% for 

validation, and the remaining 10% for testing purposes, a balanced distribution ensures 

robust training, validation, and evaluation processes, as depicted in Figures 3.10 and 3.11. 

 

Figure 3.10: Splitting of the datasets into training, validation and testing variables 
(Ramadhani,2024). 

 

  

Figure 3.11: Splitting of the datasets into training, validation and testing 
datasets(Ramadhani,2024). 
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3.9.4 Fourth, creating a Convolutional Neural Network (CNN) model employing diverse layers. 

The developed CNN model consists of the following layers: - 

1.  A Conv2D layer comprising 16 filters, each with a kernel size of 3x3, and utilized the 

ReLU activation function.  

• Conv2D: This layer performs the convolution operation, which involves 

sliding a small filter (also known as a kernel) over the input image to extract 

local features. The "2D" in Conv2D refers to the fact that this layer operates on 

two-dimensional data, such as images. Each filter in the layer learns to detect 

specific patterns or features within the input. 

• 16 filters: The Conv2D layer comprises 16 individual filters. Each filter is a 

small matrix of weights that is convolved with the input image. Having 

multiple filters allows the layer to learn and detect various features 

simultaneously. In this case, each filter would learn different patterns or feature 

representations. 

• Kernel size: The size of the kernel dictates the filter's spatial dimensions. In 

this scenario, the kernel size is 3x3, implying that each filter is represented as 

a 3x3 matrix. When performing the convolution operation, this filter is 

employed on a 3x3 section of the input image sequentially. The filter moves 

across the image, calculating the dot product between the filter's weights and 

the corresponding values of the input pixels. 

• Rectified Linear Unit (ReLU) activation function: Once the convolution 

operation is performed, the output of each filter undergoes an element-wise 

application of an activation function. ReLU is a popular activation function 
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commonly used in CNNs. It introduces non-linearity to the network by setting 

all negative values to zero and leaving positive values unchanged. Thus, 

mathematically it can be written as , ReLU(x) = max (0, x). ReLU activation 

helps the neural network to learn complex, non-linear relationships between 

features and enhances the network's ability to generalize and learn more 

discriminative features. 

 

 

2. A 2x2 MaxPooling2D layer is used. Another Conv2D layer with 32 filters and a 

subsequent MaxPooling2D layer were employed, enhancing the network's ability to 

extract relevant features.  

• The MaxPooling2D layer, utilizing a 2x2 pool size is a common operation used 

in convolutional neural networks (CNNs) to down sample the input and reduce 

the spatial dimensions. The pool size determines the size of the pooling 

window. 

• This layer takes the output from the previous Conv2D layer and performs max 

pooling with a pool size of 2x2. The layer divides the input into non-

overlapping 2x2 regions and picks the maximum value within each region. This 

operation reduces the spatial dimensions by a factor of two (2), effectively down 

sampling the feature maps. The purpose of this layer is to capture the most 

salient features while reducing computational complexity. It enhances the 

network's ability to generalize and extract relevant features by emphasizing the 

most prominent features within each region. 
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• Conv2D (32 filters): After the MaxPooling2D layer, another Conv2D layer with 

32 filters is employed. This layer applies 32 filters to the input feature maps, 

extracting more complex and higher-level qualities from the previous layer's 

output. The filters in this layer learn to recognize and detect specific patterns or 

structures within the feature maps. The use of additional filters increases the 

network's capacity to learn and represent a wider range of features. 

• The combination of Conv2D layers and MaxPooling2D layers in this sequence 

allows the network to learn and extract increasingly complex and meaningful 

features from the input data. The Conv2D layers identify local patterns, edges, 

and textures, while the MaxPooling2D layers down sample the feature maps, 

maintaining the most important information and reducing computational 

complexity. This architecture helps the network to focus on relevant features, 

improving its ability to extract and represent the relevant characteristics of the 

input data. 

 
3. The architecture further includes a Conv2D layer consists of  16 filters, a 

MaxPooling2D layer, and a Flatten layer that convert the output into a one-dimensional 

array.  

• Flatten: This layer is used to convert the multidimensional feature maps into a 

one-dimensional array. It "flattens" the spatial dimensions, resulting in a long 

vector representation. This layer transforms the output of the previous layer into 

a format suitable for feeding into the subsequent fully connected layers. 
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4. The model continued with a Dense layer of 256 units and an activation function(ReLU), 

followed by a Dropout layer with a dropout rate of 0.2.  

• Dense (256 units, ReLU activation): The Dense layer is a fully connected layer where 

each neuron is connected to every neuron in the previous layer. The layer has 256 units, 

which means it produces an output of shape (None, 256). The ReLU activation function 

is applied to the output of this layer, which introduces non-linearity into the network. 

ReLU activation sets all negative values to zero and keeps the positive values 

unchanged. This activation function enables the introduction of non-linear 

characteristics, enabling the neural network to grasp intricate connections among 

features. 

• Dropout (dropout rate of 0.2): The Dropout layer was used to mitigate 

overfitting, which is a common issue in deep learning models. During training,  

Dropout is a technique that introduces randomness by randomly deactivating a 

portion of input units during each update in a neural network. By doing so, it 

effectively simulates the dropout of certain neurons. The primary purpose of 

this approach is to encourage the network to develop more resilient and general 

representations by avoiding overreliance on specific sets of features. In this 

scenario, the Dropout layer is placed after the Dense layer, and it operates with 

a dropout rate of 0.2, implying that 20% of the input units will be randomly 

zeroed out while the model is being trained. 

 

• By adding the Dense layer with ReLU activation and the Dropout layer, the 

model introduces additional non-linearity and regularization techniques to 
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improve its generalization ability and reduce overfitting. The Dense layer with 

ReLU activation enables  the network to learn more complex representations, 

and the Dropout layer helps in preventing the model from memorizing the 

training data too closely, leading to better performance on unseen data. 

 
5. Lastly, a Dense layer with 1 unit and a sigmoid activation function facilitated binary 

classification. 

• The final layer of the model architecture consists of a Dense layer with 1 unit and 

a sigmoid activation function. This layer facilitates binary classification, indicating 

the model's output is a probability value between 0 and 1. 

 

• Dense (1-unit, sigmoid activation): The Dense layer has 1 unit, representing the 

modal’s final output. In binary classification tasks, this outputs unit typically 

indicates the probability of fitting to one of the two classes. The sigmoid activation 

function, also known as the logistic function, is applied to the output of this layer. 

It squashes the output values between 0 and 1, interpreting them as probabilities. 

The sigmoid activation is commonly used in binary classification problems as it 

allows the model to provide a probability estimate for the positive class. 

• By employing a Dense layer with a single unit and applying the sigmoid activation 

function as the final layer, the model is configured to perform binary classification. 

The output value, after passing through the sigmoid activation, can be interpreted 

as the predicted probability of belonging to the positive class. Based on a chosen 

threshold (e.g., 0.5), the model can make a binary decision by classifying samples 

with probabilities above the limit as positive and those below as negative. 
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Figure 3.12: Layers of a CNN model (Ramadhani,2024). 

After adding layers to a model, the model in then compiled so that it can further be 

trained as shown in Figure 3.12. 

 

Figure 3.13: Model compilation (Ramadhani,2024). 

 

Figure 3.13 shows the parameters used for compilation of the model and the following is 

the description of the parameters used., 

• Optimizer: 'adam' 

The Adam optimizer is a popular optimization algorithm commonly used in deep 

learning. It combines the advantages of two other optimization methods, AdaGrad and 

RMSProp. Adam adapts the learning rate for each parameter based on their previous 

gradients, making it effective in training models with large and complex datasets. The 

'adam' argument specifies the use of this optimizer. 
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• Loss Function: tf.losses.BinaryCrossentropy() 

The BinaryCrossentropy loss function is suitable for binary classification problems, 

where the task is to predict between two classes. It measures the difference between the 

predicted probabilities and the true labels. The tf.losses.BinaryCrossentropy() function 

calculates the loss by comparing the predicted values with the true labels. The goal of 

training the model is to minimize this loss function (errors). 

• Metrics: ['accuracy'] 

The 'accuracy' metric is commonly used to evaluate the performance of classification 

models. It calculates the accuracy of the model's predictions, which is the ratio of 

correctly predicted samples to the total number of samples. By specifying ['accuracy'], 

the model will track and report the accuracy metric during training and evaluation. 

  When the model is compiled with these configurations, it is ready for training using 

the   specified optimizer, loss function, and metrics. 
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Table 3.1: The  model architecture summary 

 

Table 3.1 provides  architecture summary  of a Convolutional Neural Network (CNN) model with 

specific layer types, output shapes, and the number of parameters for each layer. The model 

consists of several convolutional and max-pooling layers, followed by a flatten layer and two dense 

layers with dropout. 

The first convolutional layer (Conv2D) outputs feature maps of size (None, 254, 254, 16) and has 

448 trainable parameters. Subsequently, a max-pooling layer (MaxPooling2D) reduces the spatial 

dimensions to (None, 127, 127, 16) with no additional parameters. 
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The second convolutional layer (Conv2D_1) generates feature maps of size (None, 127, 125, 32) 

with 4640 trainable parameters. Another max-pooling layer (max_pooling2d_1) reduces the 

dimensions to (None, 62, 62, 32) without any parameters. 

The third convolutional layer (conv2d_2) generates  feature maps of size (None, 60, 60, 16) with 

4624 trainable parameters. A max-pooling layer (max_pooling2d_2) further reduces the 

dimensions to (None, 30, 30, 16) with no parameters. 

Then, a flatten layer converts the 3D feature maps into a 1D vector of size (None, 14400) before 

passing the data to the first dense layer (Dense). The dense layer outputs (None, 256) neurons with 

3,686,656 trainable parameters. A dropout layer follows the dense layer, which acts as a 

regularization technique and has no additional parameters. 

Finally, the last dense layer (dense_1) produces a single output neuron, aiming for binary 

classification (None, 1) with 257 trainable parameters. 

The total number of model’s parameters is 3,696,625, all of which are trainable, as there are no 

non-trainable parameters in this architecture. 

3.9.5 Fifth, Training and validation of the  model 
 

The model was trained using  fit() function, with some additional parameters and a callback for 

early stopping as shown in Figure 3.14. 

 

Figure 3.14: Model training and validation process (Ramadhani,2024). 
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 Figure 3.14  shows the code snippet of the model’s training process. The following  is an 

explanation of  what each component does:- 

• Early Stopping callback: 

The Early Stopping callback is used to monitor a specified metric during training and 

stop the training process if the metric does not improve after a certain number of 

epochs. In this case, the monitored metric is 'val_loss', which refers to the validation 

loss. The patience parameter was set to 5, indicating that training has to stop if the 

validation loss does not improve for 5 consecutive epochs. 

• Training data: train 

The 'train' variable represents the training data that has been used to train the model. It 

has been in the form of input features and corresponding target labels. 

• Number of epochs: epochs=30 

The 'epochs' parameter specifies the number of times the model has iterate over the 

entire training dataset during training. In this case, the model has been trained for 30 

epochs. This value was chosen after several testing of different numbers of epochs. 

• Validation data: validation_data=val 

The 'val' variable represents the validation data that has been used to evaluate the 

model's performance during training. It should be in the same format as the training 

data, with input features and corresponding target labels. 
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• Callbacks: callbacks=[early_stop] 

The 'callbacks' parameter allows to specify a list of callbacks to apply during training. 

In this case, the early_stop is included to monitor the validation loss and stop training 

if the metric does not improve for five (5) successive epochs. 

By calling model.fit () with these parameters and the specified data, the model will be trained using 

the training data, evaluated on the validation data, and the training will stop early if the model’s  

validation loss does not improve for 5 successive epochs. The training history will be stored in the 

'hist' variable, which can be used for further analysis or visualization of the training progress as 

shown in Figure 3.15. 

 

 

Figure 3.15: The last seven training progress of the model for each epoch (Ramadhani,2024). 
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3.10 Evaluation Metrics 

Using Accuracy and F1 score as evaluation metrics in a breast cancer prediction model is essential 

for a comprehensive assessment of its performance. Accuracy offers an overall measure of correct 

predictions, providing insight into the model's correctness in classifying both malignant and benign 

cases. However, in the context of breast cancer prediction where class imbalances can occur, F1 

score assumes critical importance by considering both precision and recall. It ensures that the 

model not only accurately classifies cases but also effectively captures positive instances, 

mitigating the risks associated with false negatives and false positives. By combining Accuracy 

and F1 score, the evaluation process gains a more holistic view of the model's ability to balance 

precise identification of cancer cases while minimizing misclassifications, thereby enhancing the 

model's clinical relevance and aiding informed medical decisions. 

The model was evaluated using the following performance metrics: 

• Accuracy: Accuracy measures the overall accuracy of a model's predictions by 

determining the percentage of correctly classified instances among all instances. In 

this study the developed CNN model achieved an accuracy of 96.4%, indicating 

that it correctly classified 96.40% of the MRI images. This  high accuracy score 

suggests that the model performs well in distinguishing between different classes.  

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 	!"#$%&	()	*(&&%*+	,&%-.*+.(/0
1(+23	/"#$%&	()	,&%-.*+.(/0

𝑥100                             (3.1)  

 

• F1 score: The F1 score is a measure that combines precision and recall into a single 

metric, providing a balanced assessment of the  performance of the model. The F1 
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score takes into account both false positives and false negatives. In this study, the 

developed model achieved an F1 score of 96.69 %, indicating a high balance 

between precision and recall. This  score suggests the model has a good balance 

between correctly identifying positive cases and minimizing false positives and 

false negatives. 

𝑭𝟏 − 𝑺𝒄𝒐𝒓𝒆 = 	 4∗(7&%*.0.(/∗8%*233)
7&%*.0.(/:8%*233

                                  (3.2) 

 

 

    Figure 3.16: Code snippet of how the  performance metrics was calculated (Ramadhani,2024) 

 

Figure 3.16 shows  the code snippet that has been used to imports three performance 

metrics from TensorFlow's Keras library: Precision, Recall, and BinaryAccuracy. The 

following is  a breakdown of the code and what it does: 
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from tensorflow.keras.metrics import Precision, Recall, BinaryAccuracy: This line 

imports the required performance metrics from the tensorflow.keras.metrics module. These 

metrics are used to evaluate the performance of classification models. 

 

pre = precision(): This line creates an instance of the Precision metric. This measures the 

proportion of correctly predicted positive cases out of the total cases predicted as positive. 

 

re = recall(): This line creates an instance of the Recall metric. Recall measures the 

proportion of correctly predicted positive instances out of the total actual positive instances. 

 

acc = BinaryAccuracy(): This line creates an instance of the BinaryAccuracy metric. 

BinaryAccuracy calculates the accuracy of binary classification models. It measures the 

proportion of correctly predicted instances (both true positives and true negatives) out of 

the total number of instances. 

 
print(f'Precision:{pre.result().numpy()},Recall:{re.result().numpy()},Accuracy:{acc.

result().numpy()}'): This line prints the current results of the metrics. By calling result() 

on each metric and converting it to a NumPy array using numpy(), so as to obtain the 

current value of each metric.  
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3.10.1 Additionally, Saving the model in HDF5 format using Kera’s save function.  
 

The trained model was saved as an HDF5 file using the .h5 file extension. The HDF5 file format 

is commonly used to store and manage large amounts of numerical data, including machine 

learning models. 

By saving the model as an HDF5 file, it can be easily loaded and reused later without having to 

retrain it from scratch. The HDF5 file contains all the necessary information about the model 

architecture, weights, optimizer configuration, and training parameters, allowing you to restore the 

model and make predictions on new supplied data. 

To load the saved model from the HDF5 file, the load_model function from the Keras library, as 

shown in the code snippet in Figure 3.17. 

 

Figure 3.17: How the model was saved as HDF5 file (Ramadhani,2024). 

 

By calling `model.save()`, the developed model is saved as an HDF5 file 

(`BreastCancerPredictionModel.h5`) in the specified directory (`model_version 1.0`). Later, the 

`load_model` function is used to load the saved model from the same directory and assign it to the 

`new_model` variable for further use, as shown in Figure 4.15 
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3.10.2 Lastly, Integrating the model with a streamlit dashboard. 
 

Furthermore, the developed model was integrated with a dashboard made using streamlit and the 

source code file named  to Breast_Cancer_Prediction_Model.py. Streamlit is an open-source 

Python library that allows to create and deploy custom web applications for machine learning and 

data science projects. It simplifies the process of building interactive web-based interfaces by 

providing an intuitive and user-friendly way to design and develop applications. 

Streamlit, can quickly convert Python scripts, models, and data visualizations into interactive web 

apps. It provides a high-level API that allows user to create and customize UI elements such as 

buttons, sliders, dropdowns, and plots. Streamlit enables writing of code that can  handle user 

inputs, process data, and update the app dynamically. 

Streamlit is mostly used in the data science and machine learning community because of its 

simplicity and ease of use. It promotes a smooth workflow for quickly prototyping and sharing 

ideas, making it a popular choice for building interactive data applications and creating demos for 

ML models. To run the model’s dashboard, we run  the command streamlit run 

Breast_Cancer_Prediction_Model.py on the terminal after navigate to the directory where the  

Breast_Cancer_Prediction_Model.py file is located. 
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Figure 3.18: A home page of an integrated model with streamlit (Ramadhani,2024). 

  

Figure 3.18 shows the dashboard of the model developed using Streamlit. It has the following 

menu options: 

Home: This option displays the home page, which serves as an introduction to the  application. It 

provides users with an overview of the model and giving them a context of what the model does 

and how to use it. 

Model Evaluation: Selecting this option presents users with the values of evaluation metrics such 

as accuracy, recall, precision,  and F1 score. These metrics provide an assessment of the 

performance of the developed  model and can help users understand its effectiveness as shown in 

Figure 3.19. 
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Figure 3.19: Model's evaluation metrics (Ramadhani,2024). 

New Patient: This button give user a window where user can upload a new MRI image for 

prediction. By clicking on this option, users can access the place to select a new MRI image file, 

which will be processed by the  model and make predictions related to either the image provided 

belong to benign or malignant class . It provides a means for users to interact with the  model and 

receive predictions for new patients as shown in Figure 3.20 , Figure 3.21 and Figure 3.22. 

 

Figure 3.20: Page for new prediction of a new MRI image (Ramadhani,2024). 
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Figure 3.21: Predicted outcome from a new MRI image, i.e., the probability outcome (0.999) and 
the class of an MRI image (Malignant) (Ramadhani,2024). 

 

Figure 3.22:  Predicted outcome from a new MRI image, i.e., the probability outcome (0.00034) 
and the class of an MRI image (Benign) (Ramadhani,2024). 
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About This Model: This button provides information about how the model was built. It could 

include details about the architecture, training data, preprocessing steps, and any other relevant 

information that would help users understand the underlying model and its development process 

as shown in Figure 3.23. 

 

Figure 3.23: About the model(Ramadhani,2024). 

Overall, the developed streamlit dashboard offers a user-friendly interface with distinct menu 

options. It provides an introduction, showcases model evaluation metrics, allows users to upload 

new MRI images for prediction, and shares information about the model's construction. This way, 

users can navigate through the different sections, understand the model's performance, interact 

with it, and gain insights into its development. 
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CHAPTER FOUR 

4 RESEARCH  FINDINDS AND DISCUSSION 

4.1 Overview 

This chapter presents and discusses the research findings. The evaluation metrics used to assess 

the performance of the model include accuracy and F1 score. The purpose of this chapter is to 

provide an in-depth analysis of the outcomes and implications of this study.  

4.2 Discussion  
 

The achieved evaluation metrics demonstrate the efficacy of the CNN model in classifying Breast 

MRI images.  

The high accuracy score of 96.4% indicates that the model made correct predictions for a 

significant portion of the MRI images. This demonstrates the model's capability to effectively 

classify  between different classes and make accurate classifications. 

The F1 score of 96.69 % suggests that the model strikes a good balance between precision and 

recall. This balance is important to avoid overly biased predictions towards either false positives 

or false negatives. 
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Figure 4.1: A plot of accuracy against epochs (Ramadhani,2024). 

 

In Figure 4.1, the accuracy of the model is represented on the y-axis, while the number of epochs 

is depicted on the x-axis. The plot shows how the accuracy of the model changes as the number of 

training epochs increases. 

Initially, at the beginning of training, the accuracy was low as the model was still learning and 

adjusting its parameters. However, as the epochs progress, the accuracy tends to improve. This 

improvement indicates that the model was getting better at correctly classifying breast cancer cases 

based on the MRI images,(Zhao et al., 2018). 

The plot demonstrates an increasing trend in accuracy with each epoch, indicating that the model's 

performance was improving over time. The rate at which the accuracy increases vary, with larger 

improvements in the earlier epochs and possibly slower progress as training continues. 
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The increasing trend of accuracy with epoch was encouraging sign, suggesting that the model is 

effectively learning the patterns and features in the MRI images that are indicative of breast cancer. 

The model becomes more confident in its predictions as it is exposed to more training data and 

learns from it. 

The plot of accuracy vs epoch provides insights into the model's learning progress and can help 

determine when to stop training to avoid overfitting. It also serves as a visual representation of the 

performance of the model  over time, showcasing the increasing assurance and reliability of the 

breast cancer detection model as the number of epochs increases (Zhao et al., 2018). 

 

Figure 4.2: Plot of a loss against epochs (Ramadhani,2024). 

Figure 4.2,shows  a plot of loss vs. epoch for the CNN model used in breast cancer detection using 

MRI images shows that the loss of the model is represented on the y-axis, while the number of 



 61 

epochs is depicted on the x-axis. The plot illustrates how the loss, which is a measure of the model's 

prediction error, changes as the number of training epochs increases. 

At the beginning of training, the value of the loss was relatively high as the model's initial 

predictions are likely to be far from the true labels. However, as the epochs progress and the model 

learn from the training data, the loss gradually decreases. 

The decreasing trend in the loss indicates that the model was becoming more accurate in its 

predictions over time. As the model adjusts its parameters through optimization algorithms, it 

minimizes the difference between its predictions and the true labels. Consequently, the loss value 

decreases, signifying improved performance in capturing the patterns and features associated with 

breast cancer in the MRI images, (Zhao et al., 2018). 

Ideally, the loss should decrease steadily with each epoch. However, it is important to monitor the 

plot closely for any irregularities or fluctuations in the loss curve. Sharp spikes or sudden increases 

in the loss may indicate that the model is overfitting to the training data or encountering other 

issues. On the other hand, a loss curve that plateaus or levels off may suggest that the model has 

reached its optimal performance and further training might not significantly improve the results. 

The plot of loss vs epoch provides valuable insights into the learning progress of the CNN model. 

It helps assess the effectiveness of the model in minimizing errors and refining its predictions over 

time. By observing the decreasing trend in the loss, we gain confidence in the model's ability to 

accurately detect breast cancer based on the MRI images ,(Zhao et al., 2018). 

Overall, a decreasing loss value with increasing epochs signifies the model's learning capability 

and its improved performance in detecting breast cancer using MRI images.
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Table 5.1: Comparison of the accuracy of this research in relation to prior studies. 

RESEARCH  DATASETS USED  ACCURANCY 
Yurttakal et al., 
(2020) 

Breast MRI images of 200 Cases among them, 98 are 

benign and 102 malignant from (Turkey) 

97.5% 

Zuluaga-Gomez 
et al., (2021) 

1120 thermal images from DMR-IR Database  

(UK) 

92% 

Alanazi et al., 
(2021) 

275,000, 50 ×50-pixel RGB image patches from Kaggle  87% 

Ragab et al., 
(2019) 

The digital database for screening mammography 

(DDSM) dataset comprises 2,620 cases, while the Curated 

Breast Imaging Subset of DDSM (CBIS-DDSM) dataset 

includes 753 cases of microcalcifications and 891 cases of 

masses. 

73.6% 

Zhao et al.,( 2018) 122 digital mammogram images in which 54 malignant 

cases and 68 benign cases obtained  from the 

Mammography Image Analysis Society (MIAS) database 

97% 

This study 
(Ramadhani 
Mrisho,2024) 

Uses a total of 1419 MRI images. The datasets consist of 

700 malignant and 719 benign. 

96.4% 

 

 

In Table 5.1, Yurttakal et al. (2020) achieved an accuracy of 97.57% using breast MRI images 

from Turkey, analyzed in the MATLAB environment. 

Zhao et al. (2018) obtained  an accuracy of 97% using digital mammogram images from the MIAS 

database. 

Zuluaga-Gomez et al. (2021) obtained  an accuracy of 92% by employing thermal images from 

the DMR-IR Database. 
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Alanazi et al. (2021) obtained an accuracy of 87% using 275,000 RGB image patches from Kaggle. 

Lastly Ragab et al. (2019) achieved the lowest accuracy of 73.6% using the DDSM and CBIS-

DDSM datasets in the MATLAB environment. 

This study achieved an accuracy of 96.4% using a dataset of 1,419 MRI images, including both 

malignant and benign cases, indicating that the developed model can perform better in breast 

cancer prediction in our local health systems. Simply the developed model has also achieved high 

accuracy precision, recall as well as F1-score . 

4.3 Summary 
 

4.3.1 Objective 1  

To extract features in magnetic resonance images (MRI) that are used in detecting breast 

cancer using CNN. 

This objective was accomplished by employing CNN layers, as shown in Chapter 3 in 

Section 3.9. Thus, Convolutional Neural Networks (CNNs) are capable of extracting 

crucial features from breast images for predicting breast cancer and differentiating between 

benign and malignant cases. These features encompass various aspects of the images. 

Firstly, CNNs capture texture patterns within the breast tissue, detecting irregularities, fine 

structures, and areas with distinct texture variations. Secondly, they learn to analyze shape 

and contour information, identifying irregular or asymmetrical shapes typically associated 

with malignancy, as opposed to regular and symmetrical shapes indicative of benign 

structures. CNNs also capture spatial relationships between different regions within the 

breast image, considering the distribution of features like microcalcifications or masses. 

Additionally, they focus on tumor margins, detecting irregular and spiculated edges 
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associated with malignancy and smoother, better-defined margins typically found in 

benign masses. Lastly, CNNs learn to distinguish between different tissue densities, 

recognizing that dense breast tissue is connected to a higher risk  of obtaining breast cancer. 

By extracting these features automatically, CNNs enable accurate breast cancer prediction. 

4.3.2 Objective 2  

To develop a model which classifies between benign and malignant breast tissues of our 

local breast images at an early stage using a convolutional neural network algorithm.  

In achieving this objective. Python 3.7 was used to build a CNN model using different 

Python libraries like TensorFlow, Keras, OS, CV2, and others, as shown in Chapter 3 in 

Section 3.9. The developed model is capable of classifying MRI images between benign 

and malignant tumors. Additionally, this achievement underscores the importance of 

thoughtful dataset augmentation and the utilization of cutting-edge technologies in the 

development of effective neural network algorithms for medical image classification.  

4.3.3 Objective 3 

To evaluate the  performance of the developed model by employing performance metrics 

such as accuracy and F1 score. 

To achieve this objective, The model was assessed using accuracy and the F1 score. The 

model achieved high accuracy and F1-scores of 96.4%, and 96.6%, respectively, as shown 

in Chapter 3 in Section 3.10. This metric indicates the model's potential as a valuable tool 

for breast cancer prognosis. 
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5 CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

 

5.1 Overview 

This chapter comprises three main sections, namely, the conclusion, recommendations, and 

limitations of the study. In the conclusion section, the key findings and outcomes of the research 

are summarized and discussed. The recommendations section provides suggestions and guidance 

based on the study's results for future actions or improvements. Lastly, the limitations of the study 

are acknowledged and discussed, highlighting any constraints or challenges encountered during 

the research process. 

5.2 Conclusion 

The research was conducted at Muhimbili National Hospital. The main objective of the study was 

to develop  a CNN breast cancer prediction model using Python that could classify between Benign 

and Malignant tumors based on  MRI images. 

The study uses 30 MRI images from the Muhimbili National Hospital, consisting of 8 malignant 

and 22 benign cases. To address the data scarcity, data augmentation techniques such as rotation, 

shifting, flipping, and shearing were applied using Python, resulting in a dataset of 1419 images, 

containing 700 benign and 719 malignant cases. 

The CNN model architecture included multiple layers such as Conv2D, MaxPooling2D, and Dense 

layers with appropriate activation functions. The dataset was divided into training, validation, and 

testing sets. The model achieved impressive evaluation metrics, including high accuracy, recall, 

precision, and F1 score, indicating its effectiveness in accurately identifying breast cancer cases. 
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The research findings highlight the potential of CNNs and data augmentation techniques in 

improving breast cancer identification. Despite the initial limited dataset, data augmentation 

increased the number of samples and improved model performance. The proposed CNN 

architecture demonstrated robust feature extraction and classification capabilities. 

Further research with larger datasets and diverse populations is recommended to validate and 

generalize the proposed model. Nevertheless, this study contributes significantly to the field of 

breast cancer detection by offering an efficient approach using CNNs for early identification.  

5.3 Limitation of the study  

The study has limitations that should be considered. Firstly, the dataset used in this research is 

relatively small, consisting of only 30 original MRI images. This limited sample size may not fully 

represent the variability and complexity of real-world breast cancer cases. Therefore, the 

generalizability of the performance of the model to larger and more diverse datasets needs to be 

further investigated. 

Additionally, the study focused on using MRI images as the sole modality for breast cancer 

detection. In real-world clinical settings, multiple imaging modalities includes  mammography, 

and ultrasound results are often used in conjunction for accurate diagnosis. The exclusion of these 

complementary imaging modalities may limit the model's ability to perform at its full potential. 

Furthermore, the research solely focused on binary classification of breast cancer cases into 

malignant and benign categories. While this provides valuable insights into early detection, the 

model's performance in distinguishing different subtypes or stages of breast cancer was not 

explored. Future studies could consider incorporating more detailed classification tasks. 
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Lastly, the study was conducted using a specific dataset from Muhimbili National Hospital, which 

may have specific demographic and regional characteristics. The applicability of the model to 

other populations and healthcare settings should be investigated to assess its generalizability. 

5.4 Recommendations 

The study has shown promising results in the early identification of breast cancer using CNN. 

However, there are still several chances for further research that can be explored to improve the 

accuracy and reliability of the model. 

One potential area of future research could be to expand the dataset used in this study to include 

more diverse images of breast tissue from different populations and demographics[multi-center]. 

This could help to ensure that the model is effective in identifying breast cancer in a wider range 

of patients. 

Finally, it may be useful to explore the integration of this model into clinical practice and to 

investigate the potential benefits and limitations of using such a model in real-world settings. 
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6 APPENDICES 
APPENDIX I : Published Paper

 



 71 



 72 



 73 



 74 



 75 

 



 76 

APPENDIX II : Source code of the developed model 
 

 

 

 ['.DS_Store', 'Malignant','Benign']  

Out[6]: ['.DS_Store', 'Malignant', 'Benign'] 

Out[7]: ['malignant_0_2802.jpg',  
'malignant_0_8491.jpg', 
 'malignant_0_652.jpg', 
 'malignant_0_4283.jpg', 
 'malignant_0_3275.jpg', 
 'malignant_0_691.jpg', 
 'malignant_0_9599.jpg', 
 'malignant_0_8877.jpg', 
 'malignant_0_9228.jpg', 
 'malignant_0_5412.jpg', 
 'malignant_0_7239.jpg', 
 'malignant_0_1072.jpg', 
 'malignant_0_3665.jpg', 
 'malignant_0_5572.jpg', 
 'malignant_0_3671.jpg', 
 'malignant_0_3659.jpg', 
 'malignant_0_8297.jpg', 
 'malignant_0_5957.jpg', 

#import all required Libraries  

import tensorflow as tf 
import os # Navigation into system folders 
import cv2 #for viewing imagess 
from matplotlib import pyplot as 
plt 
import numpy as np 
from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import Conv2D, MaxPooling2D,Dense,Flatten,Dr 
from tensorflow.keras import regularizers 
from tensorflow.keras.callbacks import EarlyStopping 

os.listdir('data') 

data_dir='data' 

os.listdir(data_dir) 

os.listdir(os.path.join(data_dir,'Malignant')) 



 77 

 'malignant_0_732.jpg', 
 'malignant_0_3467.jpg', 
 'malignant_0_929.jpg', 

h"p://localhost:8888/nbconvert/html/Research%20Project/30_from…reast%20Cancer%20Predic@on%20Model-Copy1.ipynb?download=false 
 'malignant_0_8269.jpg', 
 'malignant_0_4490.jpg', 
 'malignant_0_4645.jpg', 
 'malignant_0_6640.jpg', 
 'malignant_0_2432.jpg', 
 'malignant_0_6132.jpg', 
 'malignant_0_7562.jpg', 
 'malignant_0_1113.jpg', 
 'malignant_0_4094.jpg', 
 'malignant_0_3923.jpg', 
 'malignant_0_9598.jpg', 
 'malignant_0_6330.jpg', 
 'malignant_0_2630.jpg', 
 'malignant_0_9765.jpg', 
 'malignant_0_3506.jpg', 
 'malignant_0_8447.jpg', 
 'malignant_0_2181.jpg', 
 'malignant_0_8490.jpg', 
 'malignant_0_2803.jpg', 
 'malignant_0_9968.jpg', 
 'malignant_0_5820.jpg', 
 'malignant_0_8337.jpg', 
 'malignant_0_9997.jpg', 
 'malignant_0_7992.jpg', 
 'malignant_0_6865.jpg', 
 'malignant_0_5377.jpg', 
 'malignant_0_3060.jpg', 
 'malignant_0_5439.jpg', 
 'malignant_0_2430.jpg', 
 'malignant_0_9565.jpg', 

 'malignant_0_4874.jpg',] 
 

 

 

#img=cv2.imread(os.path.join(data_dir,'Benign','h2.jpg')) 

#img.shape 

#plt.imshow(img) 
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Found 1419 files belonging to 2 classes. 

 

 

 
 

Out[12]: array([1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 
1, 0, 0, 
       1, 1, 1, 0, 0, 1, 0, 0, 1, 1], dtype=int32) 

 

Out[13]: (array([[[[0.00392157, 0.00392157, 0.00392157],           
[0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157], 
          ..., 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ]],   
         [[0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157],           
[0.00392157, 0.00392157, 0.00392157], 
          ..., 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ]],   
         [[0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157], 
          ..., 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ]],           
..., 

data=tf.keras.utils.image_dataset_from_directory('data') 

#Badili 0-255 kwenda 0 and 1 
my_data=data.map(lambda x,y:(x/255,y)) 

data_iterator= my_data.as_numpy_iterator() 

batch=data_iterator.next() 

batch[1] 

batch 
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         [[0.03921569, 0.03921569, 0.03921569], 
          [0.03921569, 0.03921569, 0.03921569],           

[0.03921569, 0.03921569, 0.03921569], 
          ..., 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ]], 
  
         [[0.03921569, 0.03921569, 0.03921569], 
          [0.03374694, 0.03374694, 0.03374694], 
          [0.03374694, 0.03374694, 0.03374694], 
          ..., 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ]], 
  
         [[0.03556985, 0.03556985, 0.03556985], 
          [0.0292739 , 0.0292739 , 0.0292739 ], 
          [0.02883241, 0.02883241, 0.02883241], 
          ..., 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ], 

[0. , 0.        , 0.        ]]], 
  
  
        [[[0.4046243 , 0.4046243 , 0.4046243 ], 
          [0.52548444, 0.52548444, 0.52548444], 
          [0.5739181 , 0.5739181 , 0.5739181 ], 
          ..., 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ], 

[0. , 0.        , 0.        ]], 
  
         [[0.43476754, 0.43476754, 0.43476754], 
          [0.5008138 , 0.5008138 , 0.5008138 ],           

[0.56170535, 0.56170535, 0.56170535], 
          ..., 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ], 

[0. , 0.        , 0.        ]], 
  
         [[0.43676472, 0.43676472, 0.43676472], 
          [0.4693321 , 0.4693321 , 0.4693321 ], 
          [0.55607957, 0.55607957, 0.55607957], 
          ..., 
          [0.        , 0.        , 0.        ], 
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          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ]], 
  
         ..., 
  
         [[0.01568628, 0.01568628, 0.01568628], 
          [0.01519608, 0.01519608, 0.01519608], 
          [0.01568628, 0.01568628, 0.01568628], 
          ..., 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ]], 
  
         [[0.01568628, 0.01568628, 0.01568628], 
          [0.01519608, 0.01519608, 0.01519608], 
          [0.01568628, 0.01568628, 0.01568628], 
          ..., 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ]], 
  
         [[0.01568628, 0.01568628, 0.01568628], 
          [0.01568628, 0.01568628, 0.01568628], 
          [0.01568628, 0.01568628, 0.01568628], 
          ..., 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ],           
[0.        , 0.        , 0.        ]]], 
  
  
        [[[0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157], 
          ..., 
          [0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157]], 
  
         [[0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157], 
          ..., 
          [0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157]], 
  
         [[0.00392157, 0.00392157, 0.00392157], 
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          [0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157], 
          ..., 
          [0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157]], 
  
         ..., 
  
         [[0.07581571, 0.07581571, 0.07581571], 
          [0.08995481, 0.08995481, 0.08995481],           [0.10526961, 
0.10526961, 0.10526961], 
          ..., 
          [0.07328431, 0.07328431, 0.07328431], 
          [0.03259421, 0.03259421, 0.03259421], 
          [0.02887944, 0.02887944, 0.02887944]], 
  
         [[0.07438725, 0.07438725, 0.07438725], 
          [0.08002451, 0.08002451, 0.08002451], 
          [0.0914254 , 0.0914254 , 0.0914254 ], 
          ..., 
          [0.07328431, 0.07328431, 0.07328431], 
          [0.04546569, 0.04546569, 0.04546569], 
          [0.04546569, 0.04546569, 0.04546569]], 
  
         [[0.0942402 , 0.0942402 , 0.0942402 ], 
          [0.08811274, 0.08811274, 0.08811274], 
          [0.08598728, 0.08598728, 0.08598728], 
          ..., 
          [0.06037454, 0.06037454, 0.06037454], 
          [0.05281863, 0.05281863, 0.05281863], 
          [0.04093137, 0.04093137, 0.04093137]]], 
  
  
        ..., 
  
  
        [[[0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ], 
          ..., 
          [0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157],           
[0.00392157, 0.00392157, 0.00392157]], 
  
         [[0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ], 
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          [0.        , 0.        , 0.        ], 
          ..., 
          [0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157]], 
  
         [[0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ],           

[0.        , 0.        , 0.        ], 
          ..., 
          [0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157]], 
  
         ..., 
  
         [[0.00392157, 0.00392157, 0.00392157],           [0.00392157, 
0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157], 
          ..., 
          [0.0066636 , 0.0066636 , 0.0066636 ], 
          [0.00392157, 0.00392157, 0.00392157], 
           
          [0.07671569, 0.07671569, 0.07671569],           ..., 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ]], 
  
         [[0.03529412, 0.03529412, 0.03529412], 
          [0.05416667, 0.05416667, 0.05416667], 
          [0.08317823, 0.08317823, 0.08317823], 
          ..., 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ], 
          [0.        , 0.        , 0.        ]], 
  
         [[0.03529412, 0.03529412, 0.03529412], 
          [0.05833333, 0.05833333, 0.05833333], 
          [0.08848039, 0.08848039, 0.08848039], 
          ..., 
          [0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157], 
          [0.00392157, 0.00392157, 0.00392157]]], 
  
          [0.0292739 , 0.0292739 , 0.0292739 ]]]], dtype=float32),  
array([1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0 , 
       1, 1, 1, 0, 0, 1, 0, 0, 1, 1], dtype=int32)) 
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#class 0 = Benign -Non Cancelous 
#class 1=Malgnant -Cancelous 
fig,ar=plt.subplots(ncols=4,figsize=(20,20)) 
for cs,img in enumerate(batch[0][:4]):     
ar[cs].imshow(img) 
    ar[cs].title.set_text(batch[1][cs]) 

#Spriting the datasets into train size ,validation size and testing 
size  
train_size=int(len(mydata)*.5) val_size=int(len(mydata)*.4) 
test_size=int(len(mydata)*.1)+1 

len(test) 

#Bulding  a CNN deep leaning Model 
from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import Conv2D, MaxPooling2D,Dense,Flatten,Dr 

 model=Sequential() 
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#layer 1 

model.add(Conv2D(16,(3,3),1,activation='relu',input_shape=(256,256,3))) 

#layer2  

model.add(MaxPooling2D()) 

#Layer 3 

model.add(Conv2D(32,(3,3),1,activation='relu'))  

#Layer 4 

model.add(MaxPooling2D()) 

#Layer 5 

model.add(Conv2D(16,(3,3),1,activation='relu'))  

#Layer 6 

model.add(MaxPooling2D()) 

#Layer 7 

model.add(Flatten()) 

#Adding L2 regularization to prevent overfitting in neural  
#networks by adding a penalty term to the loss function that encourages t 

#Layer 8 

 

model.add(Dense(256,activation='relu',kernel_regularizer=regularizers.l2 

#Adding a Dropout layer after a fully connected layer to prevent 
overfitt 
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Model: "sequential" 
_________________________________________________________________ 
 Layer (type)                Output Shape              Param #   
=================================================================  
conv2d (Conv2D)             (None, 254, 254, 16)      448                                                                         
max_pooling2d (MaxPooling2D  (None, 127, 127, 16)     0          )                                                                                                                                 
conv2d_1 (Conv2D)           (None, 125, 125, 32)      4640                                                                        
max_pooling2d_1 (MaxPooling  (None, 62, 62, 32)       0          
2D)                                                                                                                               
conv2d_2 (Conv2D)           (None, 60, 60, 16)        4624                                                                        
max_pooling2d_2 (MaxPooling  (None, 30, 30, 16)       0          
2D)                                                                                                                               
flatten (Flatten)           (None, 14400)             0                                                                           
dense (Dense)               (None, 256)               3686656                                                                     
dropout (Dropout)           (None, 256)               0                                                                           
dense_1 (Dense)             (None, 1)                 257                                                                         
================================================================= 

#Layer 9  

model.add(Dropout(0.2)) 
#Layer 10 

model.add(Dense(1,activation='sigmoid')) 

#compling the model 
model.compile('adam',loss=tf.losses.BinaryCrossentropy(),metrics=['accura 

model.summary() 
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Total params: 3,696,625 
Trainable params: 3,696,625 
Non-trainable params: 0 
_________________________________________________________________ 

 

Epoch 1/30 
22/22 [==============================] - ETA: 0s - loss: 2.2250 - accura 
cy: 0.7230 
22/22 [==============================] - 17s 697ms/step - loss: 2.2250 - 
accuracy: 0.7230 - val_loss: 0.7458 - val_accuracy: 0.7552 Epoch 2/30 
22/22 [==============================] - 16s 719ms/step - loss: 0.5419 - 
accuracy: 0.8679 - val_loss: 0.3395 - val_accuracy: 0.9392 Epoch 3/30 
22/22 [==============================] - 16s 715ms/step - loss: 0.2875 - 
accuracy: 0.9616 - val_loss: 0.2345 - val_accuracy: 0.9774 Epoch 4/30 
22/22 [==============================] - 16s 707ms/step - loss: 0.1866 - 
accuracy: 0.9830 - val_loss: 0.1537 - val_accuracy: 0.9948 Epoch 5/30 
22/22 [==============================] - 16s 711ms/step - loss: 0.1358 - 
accuracy: 0.9929 - val_loss: 0.1654 - val_accuracy: 0.9792 Epoch 6/30 
22/22 [==============================] - 16s 706ms/step - loss: 0.1443 - 
accuracy: 0.9830 - val_loss: 0.1387 - val_accuracy: 0.9948 Epoch 7/30 
22/22 [==============================] - 16s 705ms/step - loss: 0.1482 - 
accuracy: 0.9929 - val_loss: 0.1124 - val_accuracy: 1.0000 Epoch 8/30 
22/22 [==============================] - 16s 718ms/step - loss: 0.1223 - 
accuracy: 0.9915 - val_loss: 0.1987 - val_accuracy: 0.9566 Epoch 9/30 
22/22 [==============================] - 16s 713ms/step - loss: 0.1544 - 
accuracy: 0.9901 - val_loss: 0.1262 - val_accuracy: 0.9931 Epoch 10/30 
22/22 [==============================] - 16s 707ms/step - loss: 0.1636 - 
accuracy: 0.9773 - val_loss: 0.1933 - val_accuracy: 0.9878 Epoch 11/30 
22/22 [==============================] - 16s 729ms/step - loss: 0.1483 - 
accuracy: 0.9972 - val_loss: 0.1007 - val_accuracy: 0.9965 Epoch 12/30 
22/22 [==============================] - 17s 747ms/step - loss: 0.0825 - 
accuracy: 0.9957 - val_loss: 0.0980 - val_accuracy: 0.9931 Epoch 13/30 
22/22 [==============================] - 17s 739ms/step - loss: 0.1148 - 
accuracy: 0.9915 - val_loss: 0.1292 - val_accuracy: 0.9896 Epoch 14/30 
22/22 [==============================] - 16s 718ms/step - loss: 0.1307 - 
accuracy: 0.9886 - val_loss: 0.1555 - val_accuracy: 0.9809 Epoch 15/30 
22/22 [==============================] - 16s 715ms/step - loss: 0.1222 - 
accuracy: 0.9957 - val_loss: 0.0811 - val_accuracy: 1.0000 Epoch 16/30 
22/22 [==============================] - 16s 736ms/step - loss: 0.0718 - 
accuracy: 0.9986 - val_loss: 0.0536 - val_accuracy: 0.9983 Epoch 17/30 

#Stop training when a monitored metric has stopped improving. 
#For stopping the training process if validation loss  does not change 
fo early_stop = EarlyStopping(monitor='val_loss', patience=5) 

hist=model.fit(train,epochs=30,validation_data=val,callbacks=[early_stop] 
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22/22 [==============================] - 16s 733ms/step - loss: 0.0727 - 
accuracy: 0.9886 - val_loss: 0.2055 - val_accuracy: 0.9427 Epoch 18/30 
22/22 [==============================] - 16s 725ms/step - loss: 0.1989 - 
accuracy: 0.9716 - val_loss: 0.1868 - val_accuracy: 0.9931 Epoch 19/30 
22/22 [==============================] - 16s 728ms/step - loss: 0.1437 - 
accuracy: 0.9943 - val_loss: 0.0854 - val_accuracy: 0.9983 Epoch 20/30 
22/22 [==============================] - 16s 715ms/step - loss: 0.0616 - 
accuracy: 0.9986 - val_loss: 0.0408 - val_accuracy: 1.0000 Epoch 21/30 
22/22 [==============================] - 16s 718ms/step - loss: 0.0294 - 
accuracy: 1.0000 - val_loss: 0.0216 - val_accuracy: 1.0000 Epoch 22/30 
22/22 [==============================] - 17s 743ms/step - loss: 0.0249 - 
accuracy: 1.0000 - val_loss: 0.0279 - val_accuracy: 1.0000 Epoch 23/30 
22/22 [==============================] - 16s 707ms/step - loss: 0.0475 - 
accuracy: 0.9943 - val_loss: 0.1241 - val_accuracy: 0.9688 Epoch 24/30 
22/22 [==============================] - 15s 689ms/step - loss: 0.1099 - 
accuracy: 0.9943 - val_loss: 0.1028 - val_accuracy: 0.9983 Epoch 25/30 
22/22 [==============================] - 16s 693ms/step - loss: 0.0732 - 
accuracy: 1.0000 - val_loss: 0.0509 - val_accuracy: 1.0000 Epoch 26/30 
22/22 [==============================] - 15s 686ms/step - loss: 0.0336 - 
accuracy: 1.0000 - val_loss: 0.0257 - val_accuracy: 1.0000 

In 
[30]

: 

#hist.history 

#Plotting the Loss  Perfomance 
fig_1=plt.figure() 
plt.plot(hist.history['loss'],color='teal',label='loss') 
plt.plot(hist.history['val_loss'],color='orange',label='val_loss') 
fig_1.suptitle('Loss vs Epochs',fontsize=10) 
plt.legend(loc="upper right") 
plt.xlabel('Epochs') 
plt.ylabel('Loss') 
plt.show() 
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In 
[354
… 

#Plotting the accuracy  Perfomance 
 fig_2=plt.figure() 
plt.plot(hist.history['accuracy'],color='green',label='accuracy') 
plt.plot(hist.history['val_accuracy'],color='orange',label='val_accuracy' 
fig_2.suptitle('Accuracy vs Epochs',fontsize=10) 
plt.xlabel('Epochs') 
plt.ylabel('Accuracy') 
plt.legend(loc="upper left") 
plt.show() 
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import Precision,Recall,BinaryAccuracy 

pre=Precision() re=Recall() 
acc=BinaryAccuracy() 

In [342… for batch in test.as_numpy_iterator(): 
X,y=batch 
prediction=model.predict(X)     
pre.update_state(y,prediction)     
re.update_state(y,prediction)     
acc.update_state(y,prediction) 

1/1 [==============================] - 0s 211ms/step 
1/1 [==============================] - 0s 143ms/step 
1/1 [==============================] - 0s 152ms/step 
1/1 [==============================] - 0s 151ms/step 
1/1 [==============================] - 0s 107ms/step 
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In [343… print(f' 

Precision:{pre.result().numpy()},Recall:{re.result().numpy()},Ac  

Precision:1.0,Recall:0.9358974099159241,Accuracy:0.9640287756919861 

In [344… f1_score= 
2*(pre.result().numpy()*re.result().numpy())/(pre.result().nump 

In [345… f1_score 

Out[345]: 0.9668874331228751 

 

 
In [347… resize=tf.image.resize(img,(256,256)) 
plt.imshow(resize.numpy().astype(int)) 
plt.show() 

import cv2 

img=cv2.imread('benign.png') 
plt.imshow(img) 
plt.show() 
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In [348… prediction=model.predict(np.expand_dims(resize/255,0)) 

1/1 [==============================] - 0s 21ms/step 

In [349… prediction 

Out[349]: array([[0.00012774]], dtype=float32) 

In [350… if prediction > 0.5:     print('This 
image is likely to be Malignant') else:     
print('This image is likely to be Benign') 

This image is likely to be  Benign 

In [377… model.save(os.path.join('model_version 
1.0','BreastCancerPredictionModel. 

In [378… new_model=load_model(os.path.join('model_version 
1.0','BreastCancerPredic 
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APPENDIX III : Source code of the model’s dashboard made using streamlit  
 

import streamlit as st 
from streamlit_option_menu import option_menu 
from PIL import Image, ImageOps 
import time 
import h5py 
import tables 
import random 
from keras.models import load_model 
from PIL import Image, ImageOps 
import numpy as np 
import tensorflow as tf 
 
 
 
with st.sidebar: 
     selected =option_menu( 
     menu_title="Menu Option", 
     options=["Home","Model Evaluation","New Patient","About This Model"], 
     icons=["house","check-square","person","envelope"], 
     menu_icon="list", 
     default_index=0, 
         styles={ 
             "container": {"padding": "5!important", "background-color": 
"#B8D8E8"}, 
             "icon": {"color": "#0D6B99", "font-size": "25px"}, 
             "nav-link": {"font-size": "16px", "text-align": "left", 
"margin": "0px", "--hover-color": "#eee"}, 
             "nav-link-selected": {"background-color": "#33BBFF"}, 
         } 
      ) 
 
    # Define CSS style 
     style = """ 
    <style> 
        .metrics { 
            display: flex; 
            justify-content: center; 
            align-items: center; 
            height: 100px; 
            background-color: #B8D8E8; 
            border-radius: 10px; 
            box-shadow: 0px 2px 10px rgba(0, 0, 0, 0.1); 
            margin: 20px; 
            padding: 20px; 
            font-size: 24px; 
            font-weight: bold; 
            color: #333333; 
            text-align: center; 
        } 
        .metric-item { 
            margin: 20px; 
        } 
        .precision { 
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            color: green; 
        } 
        .recall { 
            color: blue; 
        } 
        .accuracy { 
            color: orange; 
        } 
    </style> 
    """ 
 
    # Display the CSS style 
     st.markdown(style, unsafe_allow_html=True) 
 
 
#Home button 
if selected=="Home": 
    times_new_roman_style = """ 
       <style> 
           body { 
               font-family: 'Times New Roman', Times, serif; 
           } 
       </style> 
   """ 
 
    # Use the css method to apply the CSS style to the page 
    st.write(times_new_roman_style, unsafe_allow_html=True) 
 
    # Display some text using the Times New Roman font 
    #st.write("This text is in Times New Roman.") 
 
    #st.success('BREAST CANCER PREDICTION MODEL') 
    st.write("<div class='metrics'>Breast Cancer Prediction Model</div>", 
unsafe_allow_html=True) 
    #st.write("<h3 style='text-align: center;font-family:Baskerville'>Breast 
Cancer Prediction Model</h2>", unsafe_allow_html=True) 
    #st.image("ai.jpeg",use_column_width='center',width=700) 
 
    with st.empty(): 
     st.image("ai.jpeg",use_column_width='center',width=700) 
 
    #instrctions 
    st.write("<h5 style='text-align: left;font-
family:Tahoma'>Instructions:</h2>", unsafe_allow_html=True) 
    st.write("<ol>" 
             "<li>""<i style='text-align: justify;font-
family:Baskerville;font-size:20px'>For New Prediction go to New Patient 
Button on Side bar then upload patient Breast MRI image " ".</i>""</li>" 
             "<li><i style='text-align: justify;font-family:Baskerville;font-
size:20px'>To see the Evaluation perfomance of the Model click on Model 
Accuarancy on Side bar" ".</i></li>" 
             "<li><i style='text-align: justify;font-family:Baskerville;font-
size:20px'>To see more information about this model click the button  About 
this model Button on side bar" ".</i></li>" 
             "</ol>", unsafe_allow_html=True) 
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#Model Accuracy button 
if selected=="Model Evaluation": 
 
 
    # Define the values 
    precision = 1.0 
    recall = 0.93 
    accuracy = 0.96 
    f1_score=0.96 
 
    st.write("<div class='metrics'> Model Evaluation 
Metrics</div>",unsafe_allow_html=True) 
    # Display the values using the CSS style 
    #st.write("<div class='metrics'>", unsafe_allow_html=True) 
    st.write(f"<h3 class='metric-item precision'>Precision: 
{precision}</h3>", unsafe_allow_html=True) 
    st.write(f"<h3 class='metric-item recall'>Recall: {recall}</h3>", 
unsafe_allow_html=True) 
    st.write(f"<h3 class='metric-item accuracy'>Accuracy: {accuracy}</h3>", 
unsafe_allow_html=True) 
    st.write(f"<h3 class='metric-item '>F1-Score: {f1_score}</h3>", 
unsafe_allow_html=True) 
 
    st.write("<ul>" 
             "<li>""<i style='text-align: justify;font-
family:Baskerville;font-size:20px'>Overall, these metrics indicate that the 
model has high precision, recall, and accuracy, which suggests that it is 
performing well on the classification task. " ".</i>""</li>" 
             "</ul>", unsafe_allow_html=True) 
 
    #st.image("loss.png", use_column_width='left', width=400) 
    #st.image("accuracy.png", use_column_width='right', width=400) 
 
    #st.write("</div>", unsafe_allow_html=True) 
 
 
 
 
  # st.write("This is Model Accuracy") 
 
 
#Model Prediction button 
if selected=="New Patient": 
    # Loading the Model 
   st.write("<div class='metrics'> Model Predictions</div>", 
unsafe_allow_html=True) 
   model = load_model('BreastCancerPredictionModel.h5') 
   uploaded_image = st.file_uploader("Please Upload your MRI Breast Image for 
Prediction",type=["png", "jpg", "jpeg"]) 
   if uploaded_image is not None: 
 
       progress_bar = st.progress(0) 
       status_text = st.empty() 
       for i in range(100): 
           time.sleep(0.1) 
           progress_bar.progress(i + 1) 



 95 

           status_text.text(f"Please 
Wait..................................................................... {i 
+ 1}%") 
       image = Image.open(uploaded_image) 
 
       #CHECKING IF AN IMAGE HAVE 3 OR 4 CHANNELS 
 
       num_channels = len(image.getbands()) 
       if(num_channels==4): 
           image = Image.open(uploaded_image).convert('RGB') 
 
       resize_image= tf.image.resize(image, (256, 256)) 
 
       prediction =model.predict(np.expand_dims(resize_image/255,0)) 
 
       if(prediction<0.5): 
        st.success(prediction) 
        st.success("The image is most likely benign") 
       else: 
        st.error(prediction) 
        st.error("The image is most likely malignant") 
 
       # st.image(image, caption='Uploaded image', use_column_width=True) 
 
 
 
if selected=="About This Model": 
 
    st.write("<h3 style='text-align: center;font-family:Baskerville'>Model 
Summary</h3>", unsafe_allow_html=True) 
 
    st.write("<ul><li><p style='text-align: justify;font-
family:Baskerville;font-size:20px'>This is a Convolutional Neural 
Network(CNN) model which have been  developed using the Keras deep learning 
library in Python .The model has been trained and tested  using 1419 MRI 
images from MNH. The model  consist of the following CNN layers :-" 
             ".</p></li></ul>", unsafe_allow_html=True) 
 
    st.write("<ol>" 
             "<li>""<p style='text-align: justify;font-
family:Baskerville;font-size:17px'>A 2D convolutional layer with 16 filters 
of size 3x3 and stride 1, using the ReLU activation function. This layer 
takes an input of shape (256, 256, 3) and outputs a tensor of shape (254, 
254, 16), with a total of 448 parameters." ".</p>""</li>" 
             "<li><p style='text-align: justify;font-family:Baskerville;font-
size:17px'>A max pooling layer that downsamples the input by taking the 
maximum value in each non-overlapping patch of size 2x2. This layer outputs a 
tensor of shape (127, 127, 16) with no parameters." ".</p></li>" 
             "<li><p style='text-align: justify;font-family:Baskerville;font-
size:17px'>Another 2D convolutional layer with 32 filters of size 3x3 and 
stride 1, using the ReLU activation function. This layer takes an input of 
shape (127, 127, 16) and outputs a tensor of shape (125, 125, 32), with a 
total of 4,640 parameters." ".</p></li>" 
             "<li><p style='text-align: justify;font-family:Baskerville;font-
size:17px'>Another max pooling layer that downsamples the input by taking the 
maximum value in each non-overlapping patch of size 2x2. This layer outputs a 
tensor of shape (62, 62, 32) with no parameters." ".</i></li>" 
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             "<li><p style='text-align: justify;font-family:Baskerville;font-
size:17px'>A third 2D convolutional layer with 16 filters of size 3x3 and 
stride 1, using the ReLU activation function. This layer takes an input of 
shape (62, 62, 32) and outputs a tensor of shape (60, 60, 16), with a total 
of 4,624 parameters." ".</p></li>" 
             "<li><p style='text-align: justify;font-family:Baskerville;font-
size:17px'>A third max pooling layer that downsamples the input by taking the 
maximum value in each non-overlapping patch of size 2x2. This layer outputs a 
tensor of shape (30, 30, 16) with no parameters." ".</p></li>" 
             "<li><p style='text-align: justify;font-family:Baskerville;font-
size:17px'>A fully connected layer with 256 neurons, using the ReLU 
activation function and L2 regularization with a penalty term of 0.01. This 
layer has 3,686,656 trainable parameters." ".</p></li>" 
             "<li><p style='text-align: justify;font-family:Baskerville;font-
size:17px'>A layer that randomly drops out 20% of the inputs during training 
to prevent overfitting. This layer has no parameters." ".</p></li>" 
             "<li><p style='text-align: justify;font-family:Baskerville;font-
size:17px'>A fully connected layer with 1 neuron, using the sigmoid 
activation function. This layer has 257 parameters." ".</p></li>" 
             "</ol>", unsafe_allow_html=True) 
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APPENDIX IV : Model’s dashboard  
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APPENDIX V : Source code of data augmentation techniques used  
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APPENDIX VI : Research clearance letter 
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APPENDIX VII : Data collection permit at MNH 
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APPENDIX VIII : Image datasets used to build the model  
 

 

 

 

 


