### THE IMPACT OF PRIVATE EXTERNAL DEBT ON MONETARY POLICY IN

**TANZANIA (2010-2020)** 

FRANCIS S. NYONZO

# A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN ECONOMICS (MSC-ECON) DEPARTMENT OF ECONOMICS OF THE OPEN UNIVERSITY OF TANZANIA

2021

### CERTIFICATION

The undersigned certifies that he has read and hereby recommend for acceptance by the Open University of Tanzania this Dissertation titled, **"The impact of Private External Debt on Monetary Policy in Tanzania (2010-2020)"** in partial fulfilment of the requirements for the award of the degree of Master of Science in Economics of the Open University of Tanzania.

.....

Dr. Felician Mutasa

(Supervisor)

.....

Date

### COPYRIGHT

No part of this dissertation may be reproduced, stored in any retrieval system, or transmitted in any form by any means—electronic, mechanical, photocopying, recording, or otherwise without prior written permission of the author or the Open University of Tanzania on that behalf.

### DECLARATION

I, **Francis Stephen Nyonzo**, declare that the work presented in this dissertation is original. It has never been presented to any other University or Institution. Where other people's works have been used, references have been provided. It is in this regard that I declare this work as original mine. It is hereby presented in partial fulfilment of the requirement for the Degree of Master of Science in Economics

.....

Signature

.....

Date

### DEDICATION

This dissertation is dedicated to Haki, Hekima, Mtego, and Shahada, they have always been my inspiration in setting and reaching various life goals

### ACKNOWLEDGEMENT

We depend on one another in getting things done. At this point, I have been economically, academically, and psychologically helped by some people who made me accomplish the program. I give thanks to my supervisor, Dr. Felician Mutasa for his relentless expert advice. He could find time to attend to me, notwithstanding his very tight academic engagements. I appreciate my lecturers at the Open University of Tanzania in the MSc-Economics program for the knowledge they endowed me with. I, therefore, thank Prof. Deus Ngaruko, Dr. Felician Mutasa, Dr. Timothy Lyanga, As well as the course coordinator, Abdul Kilima, who was always there to provide the necessary assistance.

I give special thanks to my parents Eva Shonga (Mrs. Nyonzo), and Stephen O. Nyonzo.

I express my gratitude to Juma Mabula for the trust and assistance he gave me. Bernard Myovella, whom we have been discussing and exchanging materials. I give thanks to my friend Justine Kakoko for his constructive opinions before and during the studies. I humbly appreciate my boss Maxence Melo, who gave me the chance to work with JamiiForums, which gave me the financial ability to pursue the program

Finally, I appreciate everyone who directly or indirectly contributed to making me reach this academic point

### ABSTRACT

The study aimed to investigate the imported shocks from Private External Debt and how they affect the efficiency of monetary policy. The study used the deliberate sample by collecting monthly data from 2010 to 2020 from Bank of Tanzania's website, reports and publications, which made 132 observations. Because of the cointegration that was found in the variables, the study employed the Vector Error Correction Model (VECM) to capture short term and long-term effects. The model has shown that the Private External Debt imports external shocks through exchange rates, Exchange rates affect Inflation rates and thus affecting the power of the Central Bank in controlling inflation. The study suggests that the country should use fiscal means to finance its activities because the domestic debt increases the amount of Private External Debt and also the number of cross border loans are to be limited. Discount rates are to be well managed to limit the amount of the shocks, which are imported from the financial integration and globalisation because the discount rates have also been shown to affect the Private External Debt

Keywords: Monetary Policy, Macroeconomic Shocks, Imported Shocks, Exchange Rates

### TABLE OF CONTENTS

| CERTIFICATIONi                           |
|------------------------------------------|
| COPYRIGHTii                              |
| DECLARATION iii                          |
| DEDICATIONiv                             |
| ACKNOWLEDGEMENTv                         |
| ABSTRACTvi                               |
| LIST OF TABLESx                          |
| LIST OF GRAPHSxi                         |
| LIST OF ABBREVIATIONS xii                |
| CHAPTER ONE                              |
| 1.0. INTRODUCTION                        |
| 1.1. Background of the study1            |
| <b>1.2.</b> Statement of the problem     |
| 1.3. Objectives                          |
| 1.3.1 General research objective         |
| 1.3.2. Specific Objectives               |
| 1.4. Hypothesis                          |
| <b>1.5.</b> Significance of the study    |
| 1.6. Scope of the study                  |
| CHAPTER TWO9                             |
| LITERATURE REVIEW                        |
| 2.0. Definitions of terms                |
| 2.2 Theoretical Literature Review        |
| 2.2.1. Monetary theory11                 |
| 2.2.2. Interest Rate Parity Theory       |
| 2.2.3. Monetary Theory of Inflation      |
| 2.2.4. The Balance of Payments Theory 14 |
| 2.2.5. General Theory of Public Debt 14  |

| 2.3 Empirical Literature review             |    |
|---------------------------------------------|----|
| 2.4. Conceptual and Theoretical Framework   |    |
| 2.5. Summary                                |    |
| CHAPTER THREE                               | 23 |
| 3.0. RESEARCH METHODOLOGY                   | 23 |
| 3.1 Research Design                         |    |
| 3.2 Sampling Technique                      |    |
| 3.3 Model Specification                     |    |
| 3.4 Methods of Estimation and Tests         |    |
| 3.4.1 Unit Root Test                        |    |
| 3.4.2 Johansen Cointegration Test           |    |
| 3.4.3 Error Correlation Model               |    |
| 3.4.4 Granger Causality Test                |    |
| 3.4.4 Validity and Reliability              |    |
| CHAPTER FOUR                                |    |
| 4.0 RESULTS, DISCUSSION AND RECOMMENDATIONS |    |
| 4.1. Estimation Results                     |    |
| 4.2. Unit Root                              |    |
| 4.3. Co-Integration Analysis                |    |
| 4.4. Vector Error Correction Model (VECM)   |    |
| 4.4.1. Short Run Relations                  |    |
| 4.4.2. Long-run relations                   |    |
| 4.5. Granger Causality test                 |    |
| 4.6. Diagnostics tests                      |    |
| 4.7. Discussion of the Findings             |    |
| 4.8 Conclusion                              |    |
| 4.9. Recommendations                        |    |
| REFERENCES                                  | 42 |
| APPENDIX – I                                | 46 |
| Stata Results                               |    |

| APPENDIX – II |  |
|---------------|--|
| Data Used     |  |

### LIST OF TABLES

| Table 4.1: Lag Selection Criteria Test Results         |  |
|--------------------------------------------------------|--|
| Table 4.2: Johansen Cointegration Test                 |  |
| Table 4.3: Long-Run Johansen Normalization Restriction |  |

### LIST OF GRAPHS

| Graph 1.1: External Debt Development                               | 2  |
|--------------------------------------------------------------------|----|
| Graph 1.2: Private External Debt development (Jan 2010 - Dec 2020) | 4  |
| Graph 1.3: Reserve Money and Discount Rate (2010 - 2020)           | 5  |
| Graph 2.0: Domestic and External Debt Stock (2010-2020)            | 19 |

### LIST OF ABBREVIATIONS

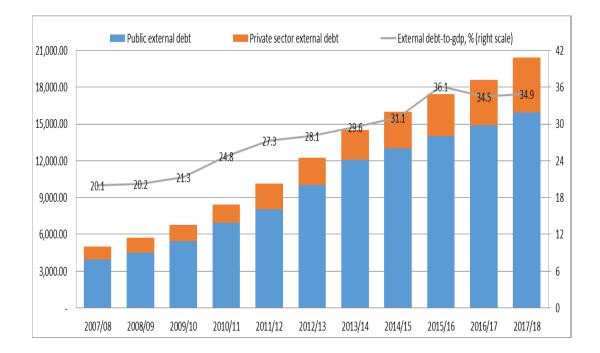
- AIC: Aike Information Criteria
- **BOT**: Bank of Tanzania
- **OECD:** Organisation for Economic Cooperation and Development
- **GDP**: Gross Domestic Product
- **MoF:** Ministry of Finance
- **NBS**: National Bureau of Statistics
- **OECD**: Organisation for Economic Cooperation and Development
- TZS: Tanzanian Shillings
- **URT:** United Republic of Tanzania
- **VAR:** Vector Autoregressive Model
- **VECM:** Vector Error Correction Model

#### **CHAPTER ONE**

#### **1.0. INTRODUCTION**

This part gives light to the problem that is going to be discussed. It has covered the background of the problem, Objectives, Significance and the scope of the study

### **1.1. Background of the study**


National Debt is composed of Domestic debt and External debt. External debt is composed of Public External debt which is acquired by the government to finance its activities or fund the budget deficit, and the Private External debt which is acquired by the private sectors to finance their activities, together they make up the national external debt

Developing countries, which are middle and low-income countries, are the borrowers. Up to 2012, only a few countries were lenders, while the majority were borrowers. The lender countries were Russia, the Middle East, some Scandinavian countries, and Venezuela, which (Grohe, Uribe, & Woodford, 2016) called them oil-exporting countries, the remaining countries are borrowers

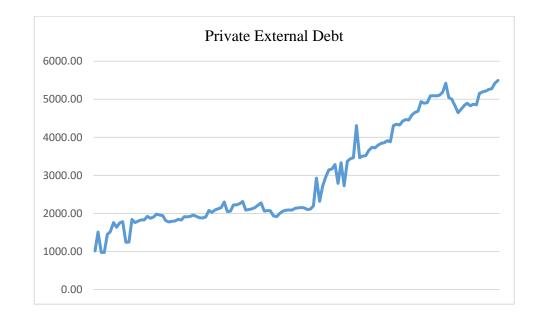
The debt being domestically or externally held has effects on the economy. (Musgrave & Musgrave, 1989) argue that the distribution of the debt affects the liquidity structure, i.e. Domestic debt affects the money that is left to the banks for issuing loans to the private sector. We are in an open economy and developing countries are more open to the world, as (Agénor & Montiel, 2008) argued. There is the rise of financial globalisation, in which

the financial markets are open even to foreigners, private sectors get chance to borrow from other countries and thus affecting the monetary policy

Cross-border lending has been increasing with the increase of financial integration, which is, the outcome of financial globalization. (Cerutti, Hale, et al. 2014) have observed that cross-border lending has increased in the past two decades that is from the 1990s, the same issue has been said by various studies from the Bank of Tanzania, i.e., the study of Kombe, (2015) and (Montiel et al., 2012). They maintain that between 1995 and 2012, total cross-border loans almost tripled, especially in low-and middle-income countries



### **Graph 1.1: External Debt Development**


Source: BoT, the Graph is the author's creation

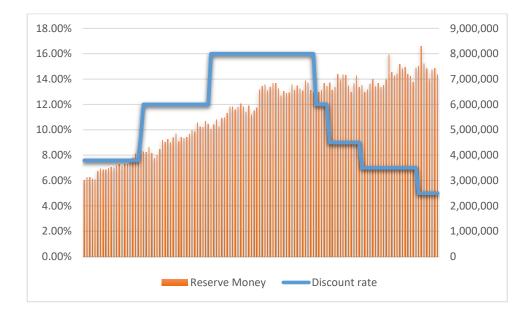
From the graph, it can be seen that the private debt has been increasing. The available data on external debt shows that the percentage change of Private External debt is 73.8% taking January 2010 and January 2018, that is to say, the private external debt has increased by 73.8%

In the year 2020, Tanzania had a public debt of \$18544.5 million and \$5455.6 Million was the Private External Debt which is 22.7% of the external debt as has been reported in the Monetary Policy Statement which is issued by the Central Bank, which is known as the Bank of Tanzania.

Developing countries as it has been said by Ndulu et al (2007) and Agenor & Montiel (2008) that in most African countries, lack of competition is pervasive so that banks do not have to alter their way of doing business or their pricing structures to get a fair share of the business. Ndulu et al (2007) observed that access to finance is limited to a few people leaving out small and medium enterprises, the informal sector, low-income people, and agricultural sectors which becomes a problem to financial inclusion. The incoming of private external debt makes those who were expected to be actors in domestic markets to be the actors in global markets

Assessment of Monetary Transmission Mechanism in Tanzania (Bashagi, Kimolo, et al, 2019) suggested the need for the Bank of Tanzania should continue monitoring the Global developments to constrain the impact of the shocks and safeguard the domestic macroeconomic stability. Private External Debt is the part of the Global developments which comes from the financial integration




## Graph 1.2: Private External Debt development (Jan 2010 - Dec 2020) Source: BoT, the graph is the author's creation

Taking Monthly data from 2010 to 2020, the Private External Debt has been increasing as can be seen in the graph above

Monetary Policy should affect decisions such as whether to consume or save. It is expected that in expansionary monetary policy people to demand more money and in contractionary Monetary Policy people will save more and thus hold less money, but then in a globalised world, people can issue loans from abroad and thus not be affected by the domestic contractionary monetary policy and thus the study around the area is very crucial

In Tanzania, BoT uses various instruments like open market operations which sell or buy debt securities, and the sale and purchase of foreign currency in the inter-bank foreign exchange market, repurchase agreements (REPO) and reverse repurchase agreements (reverse REPO). The statutory minimum reserve requirement ratio (SMR) and discount rate are also part of monetary policy instruments

In Open Market Operations the BoT uses Discount Rate. Here is developing the Discount rate for the past ten years, the graph will include the Reserve Money



### Graph 1.3: Reserve Money and Discount Rate (2010 - 2020)

### Source: BOT, graph is author's creation

Taking Reserve Money as one of the instruments that have been used it has been increased in the past ten years while Discount Rate has increased to the maximum and dropped to five per cent

### **1.2.** Statement of the problem

Global Commodity Prices are beyond the Influence of the monetary policy, and thus affecting the monetary policy. Loans are the commodities in the financial market and when they come from other parts of the world, they affect the monetary policy the same way other global prices do

Monetary Policy is the main policy that the Bank of Tanzania use to achieve economic stability, being able to command economic variables without external influences or forces is development (Sen, 2014). Having economic freedom is then essential to financial development, which may come by minimizing the external shocks

The studies which have been made so far have been focusing on financial integration and National Debt at large (Ghosh, 2016; Cerutti, Hale, et al. 2014; Mbowe, Masenya, et al. 2019 and Kombe 2015), there is limited literature on private external debt in Tanzania and thus it has been needed to conduct a study on the relationship between private external debt and Monetary Policy and find the means to limit the effects imported from it

### **1.3. Objectives**

### **1.3.1 General research objective**

The study aims at studying the imported shocks from Private External Debt and how they affect the efficiency of monetary policy

### 1.3.2. Specific Objectives

- i. Examine responses of Inflation rates, Exchange rates, and discount rates to private external debt
- ii. Explore variables that can be used to minimize the Private External Debt
- iii. Examine macroeconomic shocks which are imported from the private external debt

### 1.4. Hypothesis

H0: Private Debt does not affect Exchange rates and/or Inflation, Domestic Debt, Discount rates and M3

H1: Private Debt affects Exchange rates and/or Inflation, Domestic Debt, Discount rates and M3

### **1.5.** Significance of the study

The studies of Ndulu et al (2007), Montiel (2008), Kombe (2015), and Ndulu & Adam (2016) have shown that external shocks influence domestic fluctuations i.e depreciation of the currency against the US Dollar, the fall of 20% to 40% from the beginning of 2015 has been observed in African Currencies. Kombe (2015) showed that output, inflation, money stock, and the real exchange rate fluctuations are responding to a strong influence from external sources

When the variables associated with Monetary Policy are affected by the external shocks, BoT's ability to control the economy becomes limited and thus financial sector weakens as well as the economy at large. Recently (Ghosh 2016), (Cerutti, Hale, et al. 2014) and (Mbowe, Masenya, et al. 2019) have shown that global economies have important implications for investors but the adverse effect is increasing vulnerability of the economy against external shocks. The need for the best ways of dealing with external shocks to improve the domestic shocks is the great reason for having this study.

### **1.6.** Scope of the study

The study covers the period of 2010 to 2020 focusing on Tanzania because the country has its authoritative body in regulating the economy. The data is monthly taken so the period is enough to give enough representative sample

#### **CHAPTER TWO**

#### LITERATURE REVIEW

This chapter is focused on bringing forward the works of literature, empirical and theoretical on Public Debt and Monetary Policy as they are linked to regulating the economy

### **2.0. Definitions of terms**

**Macroeconomic Variables** can be defined as indicators or main signposts signalling the trends in the economy, some macroeconomic variables are Balance of Payments, Inflation, Economic Growth, unemployment, public expenditures, taxes, savings and investment, and aggregated price level

**Extended broad money (M3).** Bank of Tanzania has defined M3 as money that consists of currency in circulation outside banks and the shilling demand deposits of Tanzanian residents with other depository corporations, plus the shilling time and savings deposits of the Tanzanian residents with other depository corporations (banks) in the country plus foreign currency deposits of the Tanzanian residents with other Tanzanian residents with other depository corporations in the country base of the Tanzanian residents with other Tanzanian residents with other depository corporations (banks) in the country plus foreign currency deposits of the Tanzanian residents with other depository corporations in the country base of the Tanzanian residents with other depository corporations (banks) in the country plus in the country base of the Tanzanian residents with other depository corporations (banks) in the country plus in the country base of the Tanzanian residents with other depository corporations (banks) in the country base of the Tanzanian residents with other depository corporations (banks) in the country base of the Tanzanian residents with other depository corporations in the country base of the Tanzanian residents with other depository corporations in the country base of the Tanzanian residents with other depository corporations in the country base of the Tanzanian residents with other depository corporations in the country base of the Tanzanian residents with other depository corporations in the country base of the Tanzanian residents with other depository corporations in the country base of the Tanzanian residents with other depository corporations in the country base of the Tanzanian residents with other depository corporations in the country base of the Tanzanian residents with other depository corporations in the country base of the Tanzanian residents with other depository corporations with other depository corporations in the country base of the Tanzanian residents with other depository corporations with other

**Reserve Money.** The Bank of Tanzania has defined Reserve Money as The Bank of Tanzania's liabilities in the form of currency in circulation outside the banking system, cash held by banks in their vaults, and deposits of banks kept with the Bank of Tanzania

in national currency. Reserve money is also called base money, or the monetary base or high-powered money

**Inflation Rates.** The rate at which the average level of prices of a basket of selected goods and services in an economy is increasing over time. It is often expressed as a percentage. Inflation indicates a decrease in the purchasing power of a nation's currency.

**Discount Rate.** The rate of interest that the Bank of Tanzania charges on loans extended to banks. It uses the Treasury bills rate as a base plus a loaded factor, which can be changed from time to time depending on the liquidity situation in the market.

**Exchange Rate.** The price at which one unit of a currency can be purchased with another currency, for instance, TZS per US dollar.

**External debt.** Kenton (2020) has defined external debt as the portion of a country's debt that is borrowed from foreign lenders, including commercial banks, governments, or international financial institutions. External debt is part of the Public debt. The Public Debt can be domestically or externally issued, in our discussion, we deal with the external debt

**Private External Debt.** From the definition of External debt, Private External debt is the portion of a private sector's debt that is borrowed from foreign lenders. This is to say that the External debt comprises of public debt which is issued by the government and the private debt which is issued by the Individuals and Private Institutions

#### **2.2 Theoretical Literature Review**

#### **2.2.1.** Monetary theory

Monetary theory is more attributed to Milton Friedman who led the monetarist school. The school emerged after having sharp changes in real GDP in the 1970s which could hardly be explained by the Keynesian analysis that focused on aggregate demand. Friedman stressed the role of changes in the money supply as the principal determinant in the changes in the nominal value of output in the short run as well as in the long run.

The monetary theory maintains that money supply is the main driver of economic activity and that central banks, which control the levers of monetary policy, can exert power over economic growth rates by tinkering with the amount of currency and other liquid instruments circulating in a country's economy (Liberto, 2021).

This theory is applicable all over the world with some differences in efficiencies of the policy which applies the theory. The theory is carried in Monetary Policy which is controlled by the central banks the difference being the economy affects its efficiency. The studies of (Agénor & Montiel, 2008) and Frankel (2010) showed how financial markets in the developing world differs from the markets in the developed world

The money supply includes credit, cash, checks, and money market mutual funds. The most important of these forms of money is credit. Amadeo (2020) says that credit includes loans, bonds, and mortgages. When the central bank is to control the money supply, the actors are expected to respond to the move, but lack of competition among the financial

institutions has been mentioned to be the challenge that limits the transmission of monetary policy effects. The crowding-out effect is another thing that happens in the developing world as it has been observed by Ndulu et. al (2007)

Away from the emerging markets to be having less developed financial markets, the issue of cross border lending also adds a challenge as it has been observed by Demirgüç-Kunt, et al. (2017) another issue is dollarization, which is not the issue in Tanzania as it has been proven by (Kessy, Nyella, & Yabu, Transaction Dollarization in Tanzania, 2015). The issue on this study will be on cross border lending

#### 2.2.2. Interest Rate Parity Theory

Interest rate parity (IRP) is a theory according to which the interest rate differential between two countries is equal to the differential between the forward exchange rate and the spot exchange rate (Aliber, 1973).

Covered Interest Rate theory maintains that the difference between interest rates in two countries is nullified by the spot/forward currency premiums so that the investors could not earn an arbitrage profit. In Uncovered Interest Rate theory, the expected appreciation (or depreciation) of a particular currency is nullified by lower (or higher) interest. (Du et. al 2018).

In the cross-border lending, interest rates and exchange rates are good determinants and thus the theory is more applicable in this context, even if the private sector will do the cross border lending the arbitrageur's profit should be zero

### **2.2.3.** Monetary Theory of Inflation

There are many theories explaining Inflation that is Demand Pull, Cost-Push, Monetary Inflation theories, Keynesian Inflation Theories, new political macroeconomics of inflation, the new neoclassical synthesis, rational expectations revolution, and structural inflation theory as they have been explained by (Frisch, 1983; Kibritçioğlu, 2018; Totonchi, 2011). This study is more related to the monetary issues so, the Monetary Theory of Inflation will be explained amongst the available inflation theories

In the Monetary Theory of Inflation only money matters. The theory emphasizes that monetary policy is a more powerful instrument than fiscal policy in stabilising the economy. That is money supply is the best determinant of output level and prices in the short run and the price levels in the long run

As (Totonchi, 2011) maintains that Modern quantity theory holds that inflation is always and everywhere a monetary phenomenon that arises from a more rapid expansion in the quantity of money than in total output. This theoretically gives the Monetary Policy power to influence the general price levels

### 2.2.4. The Balance of Payments Theory

The balance of payments theory of exchange rate maintains the rate of exchange is influenced, by the balance of payments position of a country rather than internal prices and money supply (Stern, 2017). A deficit in the balance of payments implies that the demand for foreign currency exceeds the supply of it at a given rate of exchange.

The demand for foreign exchange arises from the demand for foreign goods and services. I have shown area that the private external debt has been increasing, so the demand for foreign currency has been increasing according to the Balance of Payments Theory.

(Chipman, 1984) maintain that the deficit in the Balance of Payments leads to an appreciation in the exchange value of the foreign currency. As a consequence, the exchange rate of domestic currency to the foreign currency undergoes depreciation.

### 2.2.5. General Theory of Public Debt

The primary real burden of public debt is borne by members of the current generation (Sharp, 1959), this has been well theorised by James Buchanan that when the debt is created to finance government spending, the real cost of the society reduces private production. The theory has considered the crowding-out effect which happens when increased government spending leads to a fall in private sector spending which occurs because of the increase in interest rates associated with the growth of the public sector

(Spencer & amp; Yohe, 1970). The crowding out has been of much debate, Economists like David Ricardo challenged it by posing the Ricardian Equivalence. While other studies confirmed the crowding-out effect i.e., Bacon and Eltis (1978), showed that the deindustrialization of the economy of the United Kingdom in the 1960s to 1970s was the result of the excessive growth of the public sector.

Because private sector has access to finance across the borders from other institutions because of the financial globalization which then can make the private investment not being affected by the financial crowding out because Demirgüç-Kunt, et al. (2017) showed that the expansion of monetary policy of other countries have effects to weaker firms in other countries

### **2.3 Empirical Literature review**

Cross-border lending has been increasing as it has been observed in various studies including (Ghosh 2016) and (Cerutti, Hale, et al. 2014) which put clear that the increase is remarkably seen in low-income countries and emerging markets. While Kombe (2015) observed it in the Tanzania context. Financial depth, access, and efficiency are needed in African financial sectors because the financial market influences private sector activity, economic growth, and poverty alleviation. In achieving depth access and efficiency the studies around the area are necessary to improve the performance of the financial markets and the monetary policy in the long run. Domestic Financial Institutions can be at risk if

the global financial market is not analyzed and know the way forward of benefiting from it while losing less to it

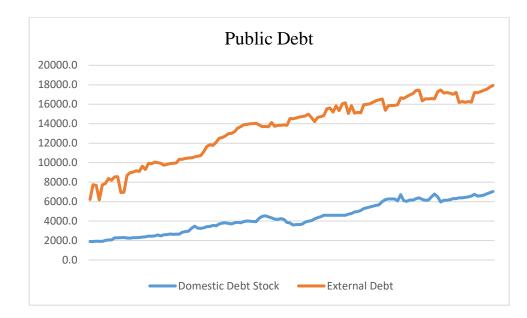
The effects of external debt are still debated amongst scholars as Mabula & Mutasa (2019) cited (Herndon et al. 2014; B. C. M. Reinhart & Rogoff 2010; Krugman 1988). But then I agree with the Tanzanian Ministry of Finance and Planning which puts that allocation of the loan determines if the external borrowing is good or bad, that is if the funds are allocated in development projects the effects will not be as same as when the funds are allocated in recurrent expenditure

Domestic borrowing affects private investments by what is known in economics as the crowding-out effect, which is the case in most developing countries including Tanzania as it has been observed by Ndulu et al. (2007). With the existing financial integration, the openness of the economy the crowding out can be a myth as the private sectors can borrow from abroad and invest

Tanzanian economy is no shortage of studies, there are several studies in public debt, External debt, and crowding out effect. The study of Mwakalila, E. (2020) has covered the Crowding out effect, public debt and external debt have been covered in the studies of (Jilenga, et al. 2016; Kasidi & Said 2013; Mabula & Mutasa 2019; Marobhe 2019 and Yusuf & Said 2018). The existing studies on cross border lending are in other countries especially developed ones as has been seen in the studies of (Cerutti et al. 2014; Fidrmuc & Hainz 2013; Avdjiev et al. 2012) As long as the country continues having the deficit budget borrowing continues and the debt is paid the amount borrowed with the interest, the debt servicing. This means the government will be using the revenue collected from the public to pay back the debt, in the balance sheet it will be recorded in Payments, and if the private borrowers also service their debt that is also payment in the balance sheet which may lead to unbalanced balance of payments. Theoretically, as Grohe et al, (2016) affirms that it should add up to zero globally, that is the difference between the payments and receipts

Tanzanian Ministry of Finance and various studies in public finance such as (Musgrave & Musgrave, 1989) (Bailey, 2004) and (Ulbrich, 2003) confirmed that debt servicing is more severe for external debt than domestic debt because the external debt is normally paid in foreign currency and that is burdensome when the currency is depreciating. The issue is the same when the private sector is paying back the loans taken from abroad

Albrizio, et al (2020) say despite the importance of understanding cross-border spillovers of monetary policy, there has been a lack of empirical consensus on that issue. The studies of cross-border lending in developed countries can help in paving the way to a conclusion about cross-border lending which has been proved to increase in developing countries. Bankers without Borders (2017) found that developing economies in the South has increased from 28 per cent of the world's cross-border bank claims in 2001 to 33 per cent in 2014


Demirgüç-Kunt, et al. (2017) found that an expansion of monetary policy through a lower policy interest rate increases cross-border credit supply especially to weaker firms as

measured by the equity to assets ratio, these findings align with the study of Barrell, & Nahhas. (2020) who used a model based on the gravity approach to international financial transaction and found that lender country gets advantages when the markets with which they are trading are small in size and less competitive and thus they become more competitive customers to the external market.

Barrell, & Nahhas. (2020) also found that the domestic country has the role in deriving the scale of cross-border lending, emphasizing capabilities as measured by GDP and Financial freedom. This gives light that even though the countries respond to the expansionary monetary policy of the host countries the domestic environment plays a part in determining the size of the cross-border credits which means developing countries still have the chance to develop their domestic financial markets and thus to be having efficient monetary policy

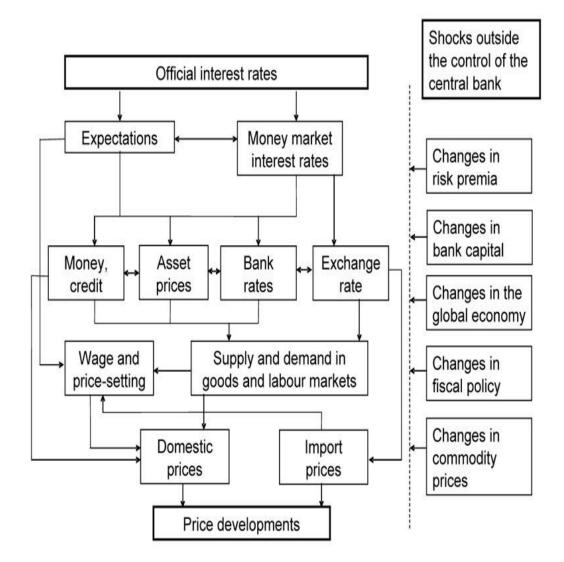
The available literature about Tanzania, taking Mabula & Mutasa (2019) as an example have found that the external debt in Tanzania is positive on privatively related to investment before declining when reaching a threshold of 40.89 per cent and recommended to regulate external debt policies because it is more responsive to private investment than domestic debt. They have used an Autoregressive Distributed Lag (ARDL)

The study of (Yusuf & Said, 2018) has shown that there is a negative relationship between public debt and economic growth in Tanzania. The public debt of Tanzania is having high external debt than the domestic debt



Graph 2.0: Domestic and External Debt Stock (2010-2020)

### Source: BoT, Graph is author's creation


The combined effect of domestic and external debt on private investment is statistically significant both in the long run and short run (Mabula & Mutasa, 2019) and thus the effects on Private Investments may reflect what (Yusuf & Said, 2018) found in their study. All these do show that Tanzania is not exceptional from the effects of external debt which made the private sector issue loans abroad and bring in more shocks to the economy although it is by the good intention of financing private investments which are affected by the public debt

As long as the empirical studies have shown the responsiveness of domestic monetary policy and Private investment to the external debt, without categorizing the debt and to study in parts, the need for this study is crucial as it will add value to the existing studies with the detailed material on the relationship between cross border lending and the monetary policy

From the illustration below, theoretically, Interest Rates affect expectations which is also the channel that causes Money Market Interest rates to change, all together makes changes to Credits, asset prices, bank rate, and exchange rates and these as well causes a change in fiscal policy that is wage and price setting, supply and demand in Goods and Labour Markets

As well, there are shocks outside the control of the central bank that changes in risk premia, changes in capital, changes in the global economy, changes in fiscal policy, and changes in commodity prices which can all lead to the changes more or less than the official interest rates

### **2.4. Conceptual and Theoretical Framework**



Monetary Framework Illustration as used by European Central Bank, (2021)

The Conceptual Framework shows the effects to the price developments are caused by the Interest rates which are in the control of the central bank and the shocks outside the control of the central bank. The Official Interest Rates transmit effects to the Expectations that players of the financial market are having and thus affect the Interest rates in the money market, the effects can also be transmitted from the Money Market to expectations. Expectations and Money Market Interest Rates affect Money Credit, Asset Prices, Bank Rates, Exchange rates which transmit effects to supply and demand in goods and labour markets and thus affect the domestic priced and Price developments

On the other hand, Shocks outside the control of the Central Bank leads to the change in the variables which are also affected by the official interest rates. The Shocks outside the control of the central bank are Changes in risk premia, Changes in Bank Capital, changes in the global economy, changes in fiscal policy and changes in the commodity prices

### 2.5. Summary

The theoretical works of the literature suggested the existence of a relationship between External debt and monetary policy and thus the empirical studies have proven the existence of the imported shocks from the external debt. Studies from developed nations have shown the effects of cross-border lending which are then been discussed in this study

### **CHAPTER THREE**

#### **3.0. RESEARCH METHODOLOGY**

This chapter explains the methodology employed including the sample, sampling technique specified econometric model and the tests that have been taken

### **3.1 Research Design**

The study aimed at examining the effects of Private External debt on monetary Policy. The monetary theory maintains that money supply is the main driver of economic activity and that central banks, which control the levers of monetary policy, can exert power over economic growth rates by tinkering with the amount of currency and other liquid instruments circulating in a country's economy (Liberto, 2021). Several variables are used in transmitting the effects of monetary policy to the economy, but in this study Reserve Money, Inflation rates, exchange rates, M3, and Discount Rates have been examined on the basis that they have been mentioned in the monetary policy of Tanzania

The data is Time series. Gujarati (2008) defines time series as a set of observations on the values that a variable takes at different times. Such data may be collected at regular time intervals, such as daily, weekly, monthly, quarterly, annually, etc., which will enable drawing inferences about them. As Mwamkonko (2019) argues this design uses statistical

techniques to identify the behaviour of variables regarding statistical regularities in their past behaviour to estimate a pattern in the variable's evolution over time

The time-series data that have been used in this study are on monthly basis and they have been limited from 2010 to 2020 as it aimed at studying the different regimes that are 2010 to 2015 and 2016 to 2020. That is the pre-lower middle-income country regime and the regime during which the country got promoted to the lower-middle-income country.

## **3.2 Sampling Technique**

The data used are secondary data taken from reports of the Bank of Tanzania. The study requires Deliberate sampling (non-probability) because the sample represents the universe (Kothari 2014). The sample included the amount of Private external debt, Discount rate, Inflation rates, exchange rates, extended broad money(M3), and Domestic Debt which cannot be sampled in this study rather be taken as they are reported

#### **3.3 Model Specification**

Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models (Lütkepohl, 2006). VAR has been used extensively for macro-econometric analysis when Sims (1980) advocated vector autoregressive (VAR) models as alternatives.

In this study, the variables are examined relative to their effects on Private External Debt in this context the relevant impulses or shocks are to be traced out. Considering the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions.

As (Lütkepohl, 2006) concludes that specification, estimation, and validation of reduced form Vector Error Correction Models (VECM) which explicitly consider the cointegration structure of the variables are briefly outlined and imposed structural short and long-run restrictions within these models.

Because of the Cointegration that was in the variables, the VAR method was of no good as the literature suggest once the variables are congregated one should estimate using VECM(Gujarati, 2008) and thus the model employed way VECM to capture short term and long-term effects of the Private External Debt to the Exchange Rates, Inflation Rates, Discount Rates, Reserve Money, Domestic Debt and M3

## **3.4 Methods of Estimation and Tests**

In time series analysis, it is very important to consider the stationarity of the data. Dissanayake (2020) defines Stationarity as a statistical property of a time series which are mean, variance and covariance do not change over time. The variables in this model have been checked if they are stationary

#### **3.4.1 Unit Root Test**

The stationarity of the model has been checked by using Augmented Dickey-Fuller (ADF) test as a unit root test for determining characteristics of data and helps to overcome the spurious effect that may arise due to the presence of non-stationary data (Newbold & Granger, 1974; Phillips, 1986).

In the ADF test, the null hypothesis which the time series is considered as non-stationary. If the p-value of the test is less than the significance level then the null hypothesis will be rejected and considers that the time series is stationary

$$\Delta Y_t = \alpha + (\beta - 1)Y_{t-1} + \varepsilon_t \dots \dots \dots \dots (1)$$

## 3.4.2 Johansen Cointegration Test

To ascertain whether variables of interest are bound together in the long run, the study will employ the Johansen (1988) co-integration approach. Within Johansen's framework, both trace and maximum Eigen-value statistics were used to ensure the robustness of the results

The trace statistic tests the null hypothesis that there are at most r co-integrating relationships against the alternative of K co-integrating relations. Following Verbeek (2004),  $\lambda$ trace and  $\lambda$ max statistics are defined as presented in the following equations:

- $\lambda$ : Eigen-value
- n: Observations
- r = 1, 2, 3... n.

Johansen's co-integration method has been used in this study because this approach enables testing for more than one co-integrating vector and hence exploiting all dynamic interactions of the variables included in the co-integration regression (Verbeek, 2017).

### **3.4.3 Error Correlation Model**

Because of the existence of the co-integration, the vector error correction model (VECM) was used to capture both short-run and long-run information. All terms in VECM are stationary, so the standard regression techniques with their associated statistical inferences are valid (Green, 2003).

The Granger representation theorem (Granger, 1983; Engle and Granger, 1987) states that if a set of variables such as  $Y_t$  and  $X_t$  are co-integrated, then there exists a valid error correction representation of the data of the form expressed in the equation that follows

$$\Delta log PED_{t} = \alpha + \sum_{h=1}^{k-1} \vartheta_{h} \Delta log PED_{t-h} + \sum_{i=1}^{k-1} \beta_{i} \Delta log IFL_{t-i} + \sum_{j=1}^{k-1} \delta_{j} \Delta log EXR_{t-j} + \sum_{r=1}^{k-1} \omega_{r} \Delta log DD_{t-r} + \sum_{l=1}^{k-1} \vartheta_{l} \Delta log DR_{t-l} + \sum_{m=1}^{k-1} \xi_{m} \Delta log RM_{t-m} + \sum_{O=1}^{k-1} \varphi_{O} \Delta log M3_{t-o} + \lambda_{1} ECT_{t-1} + u_{1t} \dots (4)$$

$$\Delta logIFL_{t} = \varpi + \sum_{h=1}^{k-1} \vartheta_{h} \Delta logPED_{t-h} + \sum_{i=1}^{k-1} \beta_{i} \Delta logIFL_{t-i} + \sum_{j=1}^{k-1} \delta_{j} \Delta logEXR_{t-j} + \sum_{r=1}^{k-1} \omega_{r} \Delta logDD_{t-r} + \sum_{l=1}^{k-1} \vartheta_{l} \Delta logDR_{t-l} + \sum_{m=1}^{k-1} \xi_{m} \Delta logRM_{t-m} + \sum_{o=1}^{k-1} \varphi_{o} \Delta logM3_{t-o} + \lambda_{2}ECT_{t-1} + u_{2t}.....(5)$$

$$\Delta log DD_{t} = \rho + \sum_{h=1}^{k-1} \vartheta_{h} \Delta log PED_{t-h} + \sum_{i=1}^{k-1} \beta_{i} \Delta log IFL_{t-i} + \sum_{j=1}^{k-1} \delta_{j} \Delta log EXR_{t-j} + \sum_{r=1}^{k-1} \omega_{r} \Delta log DD_{t-r} + \sum_{l=1}^{k-1} \theta_{l} \Delta log DR_{t-l} + \sum_{m=1}^{k-1} \xi_{m} \Delta log RM_{t-m} + \sum_{O=1}^{k-1} \phi_{O} \Delta log M3_{t-o} + \lambda_{3} ECT_{t-1} + u_{4t} \dots (7)$$

$$\Delta log DR_{t} = \sigma + \sum_{h=1}^{k-1} \vartheta_{h} \Delta log PED_{t-h} + \sum_{i=1}^{k-1} \beta_{i} \Delta log IFL_{t-i} + \sum_{j=1}^{k-1} \delta_{j} \Delta log EXR_{t-j} + \sum_{r=1}^{k-1} \omega_{r} \Delta log DD_{t-r} + \sum_{l=1}^{k-1} \theta_{l} \Delta log DR_{t-l} + \sum_{m=1}^{k-1} \xi_{m} \Delta log RM_{t-m} + \sum_{o=1}^{k-1} \delta_{o} \Delta log M3_{t-o} + \lambda_{14} ECT_{t-1} + u_{5t} \dots \dots \dots (8)$$

$$\Delta log RM_{t} = \varsigma + \sum_{h=1}^{k-1} \vartheta_{h} \Delta log PED_{t-h} + \sum_{i=1}^{k-1} \beta_{i} \Delta log IFL_{t-i} + \sum_{j=1}^{k-1} \delta_{j} \Delta log EXR_{t-j} + \sum_{r=1}^{k-1} \omega_{r} \Delta log DD_{t-r} + \sum_{l=1}^{k-1} \theta_{l} \Delta log DR_{t-l} + \sum_{m=1}^{k-1} \xi_{m} \Delta log RM_{t-m} + \sum_{o=1}^{k-1} \phi_{o} \Delta log M3_{t-o} + \lambda_{5} ECT_{t-1} + u_{6t} \dots$$
(9)

$$\Delta log M3_{t} = \tau + \sum_{h=1}^{k-1} \vartheta_{h} \Delta log PED_{t-h} + \sum_{i=1}^{k-1} \beta_{i} \Delta log IFL_{t-i} + \sum_{j=1}^{k-1} \delta_{j} \Delta log EXR_{t-j} + \sum_{r=1}^{k-1} \omega_{r} \Delta log DD_{t-r} + \sum_{l=1}^{k-1} \theta_{l} \Delta log DR_{t-l} + \sum_{m=1}^{k-1} \xi_{m} \Delta log RM_{t-m} + \sum_{O=1}^{k-1} \phi_{O} \Delta log M3_{t-o} + \lambda_{6} ECT_{t-1} + u_{7t} \dots (10)$$

Where

logIFL = logarithm of Inflation

*logEXR* = logarithm of Exchange rate

logDR = Logarithm of Discount rate

logRM = Logarithm of Reserve Money

logM3 = Logarithm of Extended Broad Money

logDD = Logarithm of Domestic Debt

*t* = Time dimension

u = impulses or innovations or shocks

k-1 is the lag length reduced by one

 $\vartheta, \delta, \beta, \theta, \xi, \phi$  are the short-run dynamics coefficients of the model's adjustment long-run equilibrium

*u* is the residuals

 $\lambda$  is the speed of adjustment parameter with a negative sign

 $ECT_{t-1}$  is the error correction term (it is the lagged value of the residuals obtained from cointegration regression of the dependent variables on the regressor. Contain long-run information derived from the long-run cointegrating relationship)

#### **3.4.4 Granger Causality Test**

Although regression deals with the dependence of one variable on other variables, it does not necessarily prove or imply causation (Gujarati, 2004). To nurture causality between variables granger causality test has to be done. This test was developed by Toda and Yamamoto (1995) and it is widely used to examine the direction of causality between two series. This approach goes beyond the conventional F-test because recent studies have shown that the F-test for determining the joint significance of regression-derived parameters, used as a test of causality, is not valid if variables are non-stationary and the test statistic does not have a standard distribution (Gujarati, 1995).

The granger causality test was implemented by estimating the following bivariate system expressed in the following equation

If  $\alpha 12 \neq 0$  and  $\alpha 22 = 0$  granger causality runs from X to Y. Conversely, if  $\alpha 12 = 0$  and  $\alpha 22 \neq 0$  granger causality runs from Y to X. Bilateral granger causality is suggested when sets

of X and Y coefficients are statistically significantly different from zero in both regressions.

Finally, the granger independence is suggested when sets of estimated X and Y coefficients are not statistically significant in both regressions (Gujarati, 2004).

#### **3.4.4 Validity and Reliability**

Lagrange Multiplier (LM) test was used to determine the presence of autocorrelation instead of Durbin Watson (DW) test, this is because DW is biased towards accepting null hypothesis of no autocorrelation when regressors include lagged dependent variable LM test takes this form:

In establishing whether residuals are normally distributed, Jarque – Bera (JB) test was used. The absence of non-normality problems implies that no structural breaks are originating from the exogenous shocks such as wars, terrorism, financial crises, etc (Green, 1995). Following Gujarati (2004), the JB test takes the following form:

$$JB = n\left(\frac{s^2}{6} + \frac{(k-3)^2}{24}\right)$$

Where;

n = the sample size

S = skewness coefficient

k = kurtosis coefficient

#### CHAPTER FOUR

## 4.0 RESULTS, DISCUSSION AND RECOMMENDATIONS

### **4.1. Estimation Results**

This section discusses the results of Private External Debt and the causative effects, that is from Private External debt to Inflation, Exchange rates, Reserve Ratio, M3, and Discount rates. The results are presented in steps; unit root test, co-integration test, error correction model, and granger causality test.

## 4.2. Unit Root

By using the Augmented Dickey-Fuller test all variables which were used in this analysis showed the problem of a unit root. They were differenced and the variables became stationary from one per cent critical value

## **4.3.** Co-Integration Analysis

The Co-integration test is very sensitive to the lag length. Before running the cointegration test the test for establishing was done. Akaike Information Criteria (AIC) was used to determine the optimal lag which picked up four lags that were used in the analysis

| Selec<br>Sampl | ction-order<br>le: 2010m9 | criteria<br>- 2020m1 |    |       |          | Number of | obs       | = 124     |
|----------------|---------------------------|----------------------|----|-------|----------|-----------|-----------|-----------|
| lag            | LL                        | LR                   | df | р     | FPE      | AIC       | HQIC      | SBIC      |
| 0              | 615.129                   |                      |    |       | 1.3e-13  | -9.80854  | -9.74386  | -9.64933  |
| 1              | 1743.75                   | 2257.2               | 49 | 0.000 | 3.6e-21  | -27.2218  | -26.7044* | -25.9481* |
| 2              | 1791.16                   | 94.826               | 49 | 0.000 | 3.7e-21  | -27.1962  | -26.2261  | -24.8081  |
| 3              | 1831.95                   | 81.579               | 49 | 0.002 | 4.3e-21  | -27.0638  | -25.6409  | -23.5612  |
| 4              | 1897.85                   | 131.79               | 49 | 0.000 | 3.4e-21* | -27.3363* | -25.4607  | -22.7192  |
| 5              | 1929.46                   | 63.223               | 49 | 0.083 | 4.7e-21  | -27.0558  | -24.7276  | -21.3243  |
| 6              | 1966.18                   | 73.432               | 49 | 0.013 | 6.3e-21  | -26.8577  | -24.0767  | -20.0117  |
| 7              | 1998.14                   | 63.923               | 49 | 0.075 | 9.5e-21  | -26.5829  | -23.3492  | -18.6224  |
| 8              | 2049.67                   | 103.06*              | 49 | 0.000 | 1.1e-20  | -26.6237  | -22.9372  | -17.5487  |

## **Table 4.1: Lag Selection Criteria Test Results**

Johansen test was used to test for cointegration and it came out showing that there is cointegration at orders three, four and five, the trace statistics are less than the critical values at five per cent.

# Table 4.2: Johansen Cointegration Test

|          |          | Johanse   | en tests for | cointegrati | on       |          |     |
|----------|----------|-----------|--------------|-------------|----------|----------|-----|
| Trend: c | onstant  |           |              |             | Number ( | of obs = | 128 |
| Sample:  | 2010m5 - | · 2020m12 |              |             |          | Lags =   | 4   |
|          |          |           |              |             | 5%       |          |     |
| maximum  |          |           |              | trace       | critical |          |     |
| rank     | parms    | LL        | eigenvalue   | statistic   | value    |          |     |
| 0        | 114      | 1534.9121 |              | 157.5657    | 94.15    |          |     |
| 1        | 125      | 1562.5386 | 0.35057      | 102.3125    | 68.52    |          |     |
| 2        | 134      | 1586.632  | 0.31371      | 54.1257     | 47.21    |          |     |
| 3        | 141      | 1600.394  | 0.19348      | 26.6017*    | 29.68    |          |     |
| 4        | 146      | 1607.2449 | 0.10151      | 12.9000     | 15.41    |          |     |
| 5        | 149      | 1613.5854 | 0.09432      | 0.2190      | 3.76     |          |     |
| 6        | 150      | 1613.6949 | 0.00171      |             |          |          |     |
|          |          |           |              |             |          |          |     |

### 4.4. Vector Error Correction Model (VECM)

The Error Correction Model (VECM) was run to capture the short run and the long-run relationship of the variables that is Private External Debt, Discount Rate, Exchange Rate, Inflation Rate, Reserve Money, M3, and Domestic Debt

#### **4.4.1. Short Run Relations**

Recalling that the results are log-log regression the results become easy to interpret and discuss. Under *ceteris paribus*, in the Short-Run, Private External Debt is affected positively by Exchange rates, Domestic Debt the unit change in Private External Debt affects Exchange rate and domestic debt by 2.12% and 0.45% respectively. A unit change in Private External debt affects negatively the Inflation rate by 0.25%, Reserve money by 0.69% and M3 by 1.57%. The discount rates are statistically insignificant which means it is not affected by the private external debt. One Percent Change in Inflation causes negative change to Exchange rate by 1.26%

Other factors remain constant Discount Rates affects positively Reserve Money. One percent change in Discount rate affects Reserve money by 0.55%. The discount rate has shown to be having a negative relation with M3 in which 1% change in Discount rates the M3 will change by 1.36%

Exchange rates affect negatively the Private External Debt and M3. One percent change in Exchange rates decreases Private External Debt and M3 by 0.05% and 0.36% respectively. Discount rates, Domestic Debt, Inflation rates and Reserve money are not statistically significantly changed by the exchange rates. Domestic Debt affects positively Reserve money and negatively M3. An Increase in Domestic Debt reduces money supply and increase reserve money

A change in reserve money causes a change in Inflation by 0.08% and M3 by 0.6% negatively. Other variables which have been used in the analysis are having no statistical significance. M3 is proved to have significant relation with the Exchange rate, a one percent change in M3 causes a change of 0.29% of the Exchange rate negatively

## 4.4.2. Long-run relations

In the long run, Private External Debt affects positively Exchange rates, Domestic Debt, and M3 under ceteris paribus. It affects Reserve Money negatively. One percent change in Private external debt changes positively exchanges rates by 1.11%, domestic debt by 1.03% and M3 by 1.99%. One percent change in Private external Debt changes negatively reserve money by 3.21%.

This does mean that the increase in the Private External Debt increases the money supply, exchange rates and Domestic debt. The effects are relatively higher in M3 than in exchange rates and domestic debt. The increase is higher in M3 because the private debt is the inflows that add up to the money in circulation, and they give more room for the government to issue loans domestically thus there is an increase in Domestic debt

| ·    |        |           |           |       | ±     |            |           |
|------|--------|-----------|-----------|-------|-------|------------|-----------|
|      | beta   | Coef.     | Std. Err. | Z     | ₽> z  | [95% Conf. | Interval] |
| _cel |        |           |           |       |       |            |           |
|      | logPED | 1         |           | •     |       |            |           |
|      | logIFL | .1950188  | .113014   | 1.73  | 0.084 | 0264846    | .4165222  |
|      | logEXR | .1110212  | .684699   | 0.16  | 0.871 | -1.230964  | 1.453007  |
|      | logDR  | -1.218133 | .2145453  | -5.68 | 0.000 | -1.638634  | 7976315   |
|      | logRM  | 12.90294  | 1.814476  | 7.11  | 0.000 | 9.346629   | 16.45925  |
|      | logM3  | -11.41498 | 1.594495  | -7.16 | 0.000 | -14.54013  | -8.289826 |
|      | _cons  | -20.29056 | •         |       |       |            | •         |

### Table 4.3: Long-Run Johansen Normalization Restriction

Johansen normalization restriction imposed

#### 4.5. Granger Causality test

There exists bi-causality between Private External Debt with Exchange Rates and Domestic Debt, another bi-causality is between Discount rates versus Reserve money and M3 the last one is M3 with Exchange rates. Taking Private External Debt and Exchange rates the bi-causality means the change in private external debt Granger causes the change in Exchange rates and also the change in Exchange rates Granger causes the change in Private external debt

#### **4.6.** Diagnostics tests

Diagnostics and tests have shown that there was no autocorrelation at the selected lag order, this was by using the Lagrange-Multiplier test. And Jarque Bera test showed that the data were normally distributed and the test for stability showed that all the eigenvalues lie inside the unit circle and thus Stability was there

### 4.7. Discussion of the Findings

The above findings show that Private External Debt affects Exchange rates in the short run. This means the macroeconomic shocks are imported through exchange rates in the short run. There is two-way causality between Private External Debt and the Exchange rates, but the unit change in Exchange rates causes a greater change in Private External Debt than the private external debt does to exchange rates

Either way, the effects from Private External Debt to Exchange rates are transmitted to inflation rates and M3 as the findings have shown that Exchange rates significantly affect Inflation Rates and M3 positively. From Inflation Rates the effects are transmitted to Reserve Money and Private External Debt again positively, Reserve Money affects Discount rates Negatively, Private External debt positively and Domestic Debt positively. An increase in Domestic debt decreases private external debt and exchange rate which then creates a vicious circle. In the long run, Private External Debt is affected Positively by Exchange rates, Domestic Debt, and M3. While Reserve Money affects Private External Debt Negatively. On the other hand, Private External Debt has been shown to have a positive relation to Exchange rates, Discount Rates, Domestic Debt, and M3. It has a negative relation to Inflation and reserve money

That being the case, Granger causality shows the direction in which effects are transmitted. Private External debt granger causes Exchange Rates and Domestic debt in which the long-run relation has shown to positive, that is the increase in Private External Debt increases the Amount left for the Government to get from the public that is Domestic Debt while the value of money goes down as the exchange rates increases. Inflation Rates, Exchange Rates and Domestic Debt Granger causes Private External Debt. This proves the bi-causality between Private External Debt and Exchange rates, Private External Debt and Domestic Debt

On the other hand, the Private External Debt has proved to affect the Monetary Policy as it affects in the short-run and long-run the variables which are used as tools by the Bank of Tanzania in achieving the economic goals. The Private External Debt has been proved to granger cause Exchange rates though exchange rates do cause the Private External Debt. The Private external Debt affects the Exchange rate less than the exchange rate affects the private external debt in the short run while in the long run, the causation disappears Private External Debt in the short run affects Exchange rates. Exchange rates affect Inflation and M3. Inflation affects Discount Rates and Private External Debt. In this causality, it can be seen that the Private External debt in some ways affects the Monetary Policy by affecting the variables which are used by the central banks in regulating the economy

In the long run, as well the analysis then shows that there exist the effects which are from Private External Debt to the Monetary Policy as the Private External debt affects inflation and Exchange rates which then spreads the effects to other variables which are used in Monetary Policy, as some recent studies have shown that the External Debt imports shock from other countries this study which has expounded the Private External Debt agrees with the studies which have shown the importation of international shocks, the studies of (Ghosh 2016); (Cerutti, Hale, et al. 2014); (Mbowe, Masenya, et al. 2019) and (Kombe, 2015)

The effects of Private External Debt are in series, and the magnitude lowers as it spreads, such that the Private External Debt causes the changes in Exchange rates while exchange rates affect Inflation and Reserve money, the reserve money affects Discount Rates and M3 in the meantime the Monetary Policy also manages the money supply especially the extended broad money supply(M3) which is also affected directly by the Private External Debt and thus affecting the monetary policy

### **4.8 Conclusion**

From the results, Private External Debt affects the efficiency of monetary policy as it affects the variables which are used in regulating the economy, that is Exchange rates which transmit the effects to other variables up to the M3. Inflation rates, Reserve Money, and Discount rates have significant effects on Private External Debt as they are all positively related to Private External Debt.

The study agrees on the studies of the studies which have shown the importation of international shocks, the studies of (Ghosh 2016); (Cerutti, Hale, et al. 2014); (Mbowe, Masenya, et al. 2019) and (Kombe, 2015). With all the positive benefits of cross border lending, including economic growth by expanding the domestic firms, there is a need to limit the long-run effects which can make the country lose the power to regulate the economy

The BoT needs the ability to command the economic variables that is the freedom to command as Amartya Sen (2014) has been insisting in his concepts of development as freedom. Thus, the external effects which affect the efficiency of the monetary policy limit the ability to command and thus take away the freedom of BoT. As the Central Bank which is the Bank of Tanzania in this context has to be free in commanding the variables to achieve the objective and goals of the Monetary Policy. The imported shocks which come from Private External Debt and External Debt as other studies have shown minimize the ability of the Bank of Tanzania to command the variables to regulate the economy

### **4.9. Recommendations**

From the results of this study, it is recommended that the central bank should consider exchange rate for being used as an operational target in addition to reserve money which is recently used to minimize the shocks which are imported from Private External Debt through Exchange rates

The Private External Debt has been shown to affect the M3 more than Reserve money and discount rate, the Bank of Tanzania should monitor the effects to keep the efficiency of the monetary policy

The shocks which are imported so far do not exceed one percent but the amalgamation of all global commodity prices can have a catastrophic effect on the monetary policy, this study rings the alarm for the Bank of Tanzania to play part monetarily in maintaining power over M3 and domestic financial market

### REFERENCES

- Aahana S. (2021). Theories of Exchange Rate Determination / International Economics. <u>https://www.economicsdiscussion.net/foreign-exchange/theories-foreign-</u> <u>exchange/theories-of-exchange-rate-determination-international-economics/30637</u>
- Agénor, R. P., & Montiel, P. J. (2008). *Development Macroeconomics*. New Jersey: Princeton University Press.
- Bailey, S. J. (2004). Strategic Public Finance. Hampshire: Pulgrave Macmillan.
- Baliño, T., Enoch, C., & Alexander, W. (1995). The Adoption of Indirect Instruments of Monetary Policy. International Monetary Fund.
- Barrell, R., & Nahhas, A. (2020). The role of lender country factors in cross-border bank lending. *International Review of Financial Analysis*, 71, 101314. <u>https://doi.org/https://doi.org/10.1016/j.irfa.2019.01.008</u>
- Bashagi, A., Kimolo, D., & Sanga, M. (2019). Assessment of Monetary Policy Transmission Mechanism in Tanzania. Bank of Tanzania.
- Bean, M. A. (2017). Determinants of Interest rates. Society of Actuaries.
- Black, L. K., & Rosen, R. J. (2021). *Federal Reserve of Chicago*. How the Credit Channel Works: Differentiating the Bank Lending Channel and the Balance-Sheet Channel. https://www.chicagofed.org/publications/working-papers/2007/wp-13
- Blanchard, O., & Johnson, D. R. (2013). Macroeconomics. Pearson.
- Bremus, F. M. (2015). Cross-border banking, bank market structures and market power: Theory and cross-country evidence. *Journal of Banking & Finance*, *50*, 242–259. <u>https://doi.org/https://doi.org/10.1016/j.jbankfin.2014.10.008</u>
- Bremus, F., & Neugebauer, K. (2018). Reduced cross-border lending and financing costs of SMEs. *Journal of International Money and Finance*, 35–58.
- Cerutti, E., Hale, G., & Minoiu, C. (2014). Financial Crises and the Composition of Cross-Border Lending. *IMF Working Paper*, WP/14/185.
- Chipman, J. S. (1984). Balance of payments theory. In *Economic Analysis in Historical Perspective* (pp. 186–217). Elsevier. <u>https://doi.org/10.1016/b978-0-408-11430-1.50013-8</u>
- Dr Candace Hastings. (2016). *Get Lit: The Literature Review YouTube*. https://www.youtube.com/watch?v=9la5ytz9MmM

- Ellingsen, T., xf, derstr, xf, & m, U. (2001). Monetary Policy and Market Interest Rates. *The American Economic Review*, *91*(5), 1594–1607. <u>http://www.jstor.org/stable/2677943</u>
- Frisch, H. (1983). Theories of inflation. Cambridge University Press.
- Ghosh, A. (2016). Banking sector globalization and bank performance: A comparative analysis of low-income countries with emerging markets and advanced economies. *Review of Development Finance*, 58–70.
- Grohe, S. S., Uribe, M., & Woodford, M. (2016). *International Macroeconomics*. Colombia: Princeton University Press.
- Gujarati, D. N. (2008). Basic Econometrics. McGraw-Hill Education;
- Hashimzade, N., & Thornton, M. A. (2013). *Handbook of research methods and applications in empirical macroeconomics*. Edward Elgar Publishing.
- Jacob A. Frenkel, H. G. J. (2013). *The Monetary Approach to the Balance of Payments*. <u>https://books.google.co.tz/books?hl=en&lr=&id=gJkQFhZZLvsC&oi=fnd&pg=PA147</u> <u>&dq=balance+of+payments+theory&ots=rsQvcmciHF&sig=zrnt5YLBlmrh52gef3xeIzt</u> <u>eabk&redir\_esc=y#v=onepage&q=balance%20of%20payments%20theory&f=false</u>
- James M. Buchanan. (2021). Public Principles of Public Debt: A Defense and Restatement -Econlib. https://www.econlib.org/library/Buchanan/buchCv2.html?chapter\_num=5#book-reader
- Johansen, S. (1988). Statistical analysis of cointegration vectors. *Journal of Economic Dynamics and Control*, 12(2–3), 231–254. <u>https://doi.org/10.1016/0165-1889(88)90041-</u> <u>3</u>
- Kennedy, P. E. (2010). Macroeconomics Essentials. The MIT Press.
- Kenton, W. (2020). *External Debt Defined*. Investopedia. https://www.investopedia.com/terms/e/external-debt.asp
- Kessy, P. (2011). Dollarization in Tanzania: empirical evidence and cross-country experience. *LSE Research Online Documents on Economics*.
- Kessy, P., Nyella, J., & Yabu, N. (2015). *Transaction Dollarization in Tanzania*. Bank of Tanzania.
- Kibritçioğlu, A. (2018). Causes of inflation in Turkey: A literature survey with special reference to theories of inflation. In *Inflation and Disinflation in Turkey* (pp. 43–76). Taylor and Francis Inc. <u>https://doi.org/10.2139/ssrn.277873</u>

- Kombe, C. A. (2015). The Relative Importance of Foreign and Domestic Shocks for Macroeconomic Fluctuations in Tanzania. In *Working Paper Series No 3*.
- Kothari, C. R. (2004). *Research methodology: Methods and techniques*. New Age International.
- Liberto, D. (2021, May 22). *What is Monetary Policy*? Retrieved from Investopedia: https://www.investopedia.com/terms/m/monetary\_theory.asp
- Lütkepohl, H. (2006). Structural vector autoregressive analysis for cointegrated variables. *Allgemeines Statistisches Archiv*, 90(1), 75–88. <u>https://doi.org/10.1007/s10182-006-0222-4</u>
- Mankiw, G. (2010). *Macroeconomics*. South-Western Cengage Learning.
- Mankiw, N. G. (2014). Principles of Microeconomics. Cengage Learning.
- Mayr, J., & Ulbricht, D. (2015). Log versus level in VAR forecasting: 42 million empirical answers—Expect the unexpected. *Economics Letters*, *126*, 40–42.
- Mbowe, W., Masenya, C., Mgangaluma, E., Temba, L., & Mrema, A. (2019). *Analysis of Economic Linkages of Tanzania's Economy to the World*. Bank of Tanzania.
- Ministry of Finance and Planning. (2018). *Tanzania National Debt Sustainability Analysis*. Dodoma: Ministry of Finance and Planning.
- Mishkin, F. S. (2004). *The Economics of Money, Banking and Financial Markets*. Library of Congress Cataloguing-in-Publication Data.
- Moneta, A., Chlass, N., Entner, D., & Hoyer, P. (2011). *Causal Search in Structural Vector Autoregressive Models*. 95–114. <u>http://proceedings.mlr.press/v12/moneta11.html</u>
- Montiel, P., Adam, C., Mbowe, W., & O'Connell, S. (2012). *Financial Architecture and the Monetary Transmission*. International Growth Centre.
- Musgrave, R. A., & Musgrave, P. B. (1989). *Public Finance in Theory and Practice*. Singapore: McGraw-Hill Book Co.
- Pham, T. (2016). *Monetary policies and the macroeconomic performance of Vietnam*. PhD. Thesis.
- Pilossof, R. (2009). Dollarisation' in Zimbabwe and the Death of an Industry. *Review of African Political Economy 36, No. 120,* 294–299.
- Rode, S. (2012). Advanced Macroeconomics. economic implications of the model.

- Roeger, W., & in 't Veld, J. (n.d.). Fiscal Policy with Credit Constrained Households. Summary for Non-Specialists Economic Papers No. 357.
- Romer, D. (2012). Advanced Macro Economics. McGraw-Hill.
- Rutherford, D. (2002). Routledge Dictionary of Economics. Routledge.
- Saunders, M., Lewis, P., & Thornhill, A. (2009). *Research methods for business students*. Pearson education.
- Sen, A. (2014). Development as freedom (1999). *The Globalization and Development Reader: Perspectives on Development and Global Change*, 525.
- Sharp, A. M. (1959). A general theory of public debt.
- Silva, J. (2020). Impact of public and private sector external debt on economic growth: the case of Portugal. *Eurasian Economic Review*, 1–28. <u>https://doi.org/10.1007/s40822-020-00153-2</u>
- Sims, C. A. (2016). *Interpreting the macroeconomic time series facts: The effects of monetary policy*. European Economic Review.
- Stern, R. (2017). Balance of Payments: Theory and Economic Policy. Routledge.
- Totonchi, J. (2011). Macroeconomic theories of inflation. *International Conference on Economics and Finance Research*, 4(1), 459–462.
- Ulbrich, H. H. (2003). *Public Finance in Theory and Practice*. Milton Park, Abingdon, Oxon OX14 4RN: Routledge.
- Yusuf, S., & Said, A. O. (2018). Public Debt and Economic Growth: Evidence from Tanzania. *Journal of Economics, Management and Trade*, 1–12.
- Zimmermannová, J. (2020). Methods in Microeconomic and Macroeconomic Issues. In V. Pászto, C. Jürgens, P. Tominc, & J. Burian (Eds.), *Spationomy: Spatial Exploration of Economic Data and Methods of Interdisciplinary Analytics* (pp. 119–147). Springer International Publishing. <u>https://doi.org/10.1007/978-3-030-26626-4\_5</u>

# APPENDIX – I

## Stata Results

|          |          | Johanse   | en tests for | cointegrati | on       |          |     |
|----------|----------|-----------|--------------|-------------|----------|----------|-----|
| Trend: c | onstant  |           |              |             | Number   | of obs = | 128 |
| Sample:  | 2010m5 - | - 2020m12 |              |             |          | Lags =   | 4   |
|          |          |           |              |             | 5%       |          |     |
| maximum  |          |           |              | trace       | critical |          |     |
| rank     | parms    | LL        | eigenvalue   | statistic   | value    |          |     |
| 0        | 154      | 1828.2695 |              | 206.6159    | 124.24   |          |     |
| 1        | 167      | 1865.6406 | 0.44229      | 131.8736    | 94.15    |          |     |
| 2        | 178      | 1891.329  | 0.33060      | 80.4969     | 68.52    |          |     |
| 3        | 187      | 1906.4627 | 0.21059      | 50.2295     | 47.21    |          |     |
| 4        | 194      | 1916.5088 | 0.14527      | 30.1372     | 29.68    |          |     |
| 5        | 199      | 1925.9188 | 0.13673      | 11.3173*    | 15.41    |          |     |
| 6        | 202      | 1931.4151 | 0.08230      | 0.3245      | 3.76     |          |     |
| 7        | 203      | 1931.5774 | 0.00253      |             |          |          |     |

```
Vector error-correction model
```

| Sample: 2010m5 -                    | 2020m12 |         |        | No. of<br>AIC | obs    | = 128<br>= -26.54126      |
|-------------------------------------|---------|---------|--------|---------------|--------|---------------------------|
| Log likelihood =<br>Det(Sigma_ml) = |         |         |        | HQIC<br>SBIC  |        | = -25.0294<br>= -22.82025 |
| Equation                            | Parms   | RMSE    | R-sq   | chi2          | P>chi2 |                           |
| D_logPED                            | 23      | .070572 | 0.4817 | 97.57285      | 0.0000 |                           |
| D_logIFL                            | 23      | .080163 | 0.2828 | 41.40288      | 0.0106 |                           |
| D_logDR                             | 23      | .06471  | 0.1708 | 21.62401      | 0.5430 |                           |
| D_logEXR                            | 23      | .012151 | 0.3778 | 63.75017      | 0.0000 |                           |
| D_logDD                             | 23      | .030692 | 0.2830 | 41.44441      | 0.0105 |                           |
| D_logRM                             | 23      | .037542 | 0.3062 | 46.34141      | 0.0027 |                           |
| D_logM3                             | 23      | .014581 | 0.4609 | 89.76698      | 0.0000 |                           |

Cointegrating equations

| Equation | Parms | chi2     | P>chi2 |
|----------|-------|----------|--------|
| _cel     | 6     | 1659.076 | 0.0000 |

Identification: beta is exactly identified

Johansen normalization restriction imposed

| beta   | Coef.     | Std. Err. | Z     | ₽> z  | [95% Conf | . Interval] |
|--------|-----------|-----------|-------|-------|-----------|-------------|
| _cel   |           |           |       |       |           |             |
| logPED | 1         |           | •     |       |           |             |
| logIFL | .0002437  | .0340007  | 0.01  | 0.994 | 0663964   | .0668838    |
| logDR  | 1047567   | .059267   | -1.77 | 0.077 | 2209178   | .0114044    |
| logEXR | -1.107857 | .2275269  | -4.87 | 0.000 | -1.553802 | 6619128     |
| logDD  | -1.034687 | .1483639  | -6.97 | 0.000 | -1.325475 | 7438994     |
| logRM  | 3.210394  | .5022875  | 6.39  | 0.000 | 2.225929  | 4.19486     |
| logM3  | -1.986624 | .5033183  | -3.95 | 0.000 | -2.97311  | -1.000138   |
| _cons  | -7.813638 |           |       |       |           |             |

|          | Coef.     | Std. Err. | Z     | ₽> z  | [95% Conf | . Interval] |
|----------|-----------|-----------|-------|-------|-----------|-------------|
| D_logPED |           |           |       |       |           |             |
| _cel     |           |           |       |       |           |             |
| L1.      | 4567844   | .0815301  | -5.60 | 0.000 | 6165805   | 2969883     |
| logPED   |           |           |       |       |           |             |
| LD.      | 0025562   | .101351   | -0.03 | 0.980 | 2012006   | .1960882    |
| L2D.     | .0495755  | .0907943  | 0.55  | 0.585 | 1283781   | .2275291    |
| L3D.     | .1549065  | .075818   | 2.04  | 0.041 | .006306   | .3035071    |
| logIFL   |           |           |       |       |           |             |
| LD.      | 0695816   | .0890601  | -0.78 | 0.435 | 2441363   | .104973     |
| L2D.     | .2542846  | .0929466  | 2.74  | 0.006 | .0721127  | .4364566    |
| L3D.     | 0880396   | .0919716  | -0.96 | 0.338 | 2683005   | .0922214    |
| logDR    |           |           |       |       |           |             |
| LD.      | 0579758   | .1062502  | -0.55 | 0.585 | 2662224   | .1502708    |
| L2D.     | 0405647   | .1052488  | -0.39 | 0.700 | 2468485   | .1657191    |
| L3D.     | 0624748   | .1021059  | -0.61 | 0.541 | 2625986   | .1376491    |
| logEXR   |           |           |       |       |           |             |
| LD.      | 3915187   | .6184676  | -0.63 | 0.527 | -1.603693 | .8206555    |
| L2D.     | -1.429853 | .6157134  | -2.32 | 0.020 | -2.636629 | 2230771     |
| L3D.     | -2.11814  | .5501721  | -3.85 | 0.000 | -3.196457 | -1.039822   |
| logDD    |           |           |       |       |           |             |
| LD.      | 254377    | .221118   | -1.15 | 0.250 | 6877602   | .1790062    |
| L2D.     | 131611    | .2243554  | -0.59 | 0.557 | 5713395   | .3081176    |
| L3D.     | 4539587   | .2253749  | -2.01 | 0.044 | 8956854   | 0122319     |
| logRM    |           |           |       |       |           |             |
| LD.      | 1.0259    | .2847246  | 3.60  | 0.000 | .4678496  | 1.583949    |
| L2D.     | .6904186  | .2567099  | 2.69  | 0.007 | .1872764  | 1.193561    |
| L3D.     | .4733374  | .2227089  | 2.13  | 0.034 | .036836   | .9098388    |
| logM3    |           |           |       |       |           |             |
| LD.      | .1675288  | .6051818  | 0.28  | 0.782 | -1.018606 | 1.353663    |
| L2D.     | 2368423   | .6226197  | -0.38 | 0.704 | -1.457154 | .9834699    |
| L3D.     | 1.57532   | .5885587  | 2.68  | 0.007 | .4217657  | 2.728873    |
| _cons    | .0016733  | .0109189  | 0.15  | 0.878 | 0197273   | .023074     |

|          | ļ        |          |       |       |           |          |
|----------|----------|----------|-------|-------|-----------|----------|
| D logIFL |          |          |       |       |           |          |
| cel      |          |          |       |       |           |          |
| _<br>L1. | .0151039 | .0926104 | 0.16  | 0.870 | 1664091   | .1966169 |
|          |          |          |       |       |           |          |
| logPED   |          |          |       |       |           |          |
| LD.      | .1245163 | .115125  | 1.08  | 0.279 | 1011246   | .3501572 |
| L2D.     | 0523153  | .1031336 | -0.51 | 0.612 | 2544535   | .1498228 |
| L3D.     | 0808371  | .0861219 | -0.94 | 0.348 | 249633    | .0879588 |
|          |          |          |       |       |           |          |
| logIFL   |          |          |       |       |           |          |
| LD.      | .350634  | .1011637 | 3.47  | 0.001 | .1523568  | .5489113 |
| L2D.     | .0634316 | .1055784 | 0.60  | 0.548 | 1434982   | .2703614 |
| L3D.     | .1312183 | .1044708 | 1.26  | 0.209 | 0735408   | .3359773 |
|          |          |          |       |       |           |          |
| logDR    |          |          |       |       |           |          |
| LD.      | .0045242 | .12069   | 0.04  | 0.970 | 2320239   | .2410723 |
| L2D.     | .0046399 | .1195525 | 0.04  | 0.969 | 2296786   | .2389584 |
| L3D.     | .1596077 | .1159825 | 1.38  | 0.169 | 0677137   | .3869292 |
|          |          |          |       |       |           |          |
| logEXR   |          |          |       |       |           |          |
| LD.      | 5153393  | .7025196 | -0.73 | 0.463 | -1.892252 | .8615738 |
| L2D.     | .6720048 | .6993911 | 0.96  | 0.337 | 6987765   | 2.042786 |
| L3D.     | 1.26764  | .6249425 | 2.03  | 0.043 | .0427751  | 2.492505 |
|          |          |          |       |       |           |          |
| logDD    |          |          |       |       |           |          |
| LD.      | .2114232 | .2511687 | 0.84  | 0.400 | 2808584   | .7037049 |
| L2D.     | .1414918 | .2548461 | 0.56  | 0.579 | 3579975   | .640981  |
| L3D.     | 0972915  | .2560042 | -0.38 | 0.704 | 5990505   | .4044676 |
|          |          |          |       |       |           |          |
| logRM    |          |          |       |       |           |          |
| LD.      | 2271526  | .3234197 | -0.70 | 0.482 | 8610435   | .4067384 |
| L2D.     | 1521872  | .2915977 | -0.52 | 0.602 | 7237082   | .4193338 |
| L3D.     | 2632383  | .2529758 | -1.04 | 0.298 | 7590619   | .2325852 |
|          |          |          |       |       |           |          |
| logM3    |          |          |       |       |           |          |
| LD.      | .1715319 | .6874282 | 0.25  | 0.803 | -1.175803 | 1.518866 |
| L2D.     | 5046166  | .707236  | -0.71 | 0.476 | -1.890774 | .8815405 |
| L3D.     | 0176242  | .668546  | -0.03 | 0.979 | -1.32795  | 1.292702 |
|          |          |          | 0.00  | 0 544 |           |          |
| _cons    | 0040504  | .0124028 | -0.33 | 0.744 | 0283595   | .0202587 |

| D_ | logDR |  |
|----|-------|--|
|    |       |  |

| D logDR  |          |          |       |       |           |          |
|----------|----------|----------|-------|-------|-----------|----------|
| cel      |          |          |       |       |           |          |
| _<br>L1. | .1403799 | .0747578 | 1.88  | 0.060 | 0061428   | .2869026 |
| logPED   |          |          |       |       |           |          |
| LD.      | 1337266  | .0929323 | -1.44 | 0.150 | 3158706   | .0484175 |
| L2D.     | 0895796  | .0832525 | -1.08 | 0.282 | 2527516   | .0735923 |
| L3D.     | 0669813  | .0695202 | -0.96 | 0.335 | 2032383   | .0692758 |
| logIFL   |          |          |       |       |           |          |
| LD.      | .0069872 | .0816624 | 0.09  | 0.932 | 1530681   | .1670425 |
| L2D.     | .1187391 | .085226  | 1.39  | 0.164 | 0483007   | .285779  |
| L3D.     | 0346272  | .0843319 | -0.41 | 0.681 | 1999148   | .1306604 |
| logDR    |          |          |       |       |           |          |
| LD.      | .0942126 | .0974246 | 0.97  | 0.334 | 0967361   | .2851612 |
| L2D.     | .0357517 | .0965063 | 0.37  | 0.711 | 1533971   | .2249006 |
| L3D.     | 0088832  | .0936245 | -0.09 | 0.924 | 1923838   | .1746174 |
| logEXR   |          |          |       |       |           |          |
| LD.      | .2985745 | .5670946 | 0.53  | 0.599 | 8129105   | 1.41006  |
| L2D.     | .4296418 | .5645692 | 0.76  | 0.447 | 6768935   | 1.536177 |
| L3D.     | .034242  | .5044721 | 0.07  | 0.946 | 9545051   | 1.022989 |
| logDD    |          |          |       |       |           |          |
| LD.      | .1783698 | .2027508 | 0.88  | 0.379 | 2190145   | .5757541 |
| L2D.     | 2993894  | .2057194 | -1.46 | 0.146 | 7025919   | .1038131 |
| L3D.     | .2347499 | .2066542 | 1.14  | 0.256 | 1702849   | .6397847 |
| logRM    |          |          |       |       |           |          |
| LD.      | 552126   | .261074  | -2.11 | 0.034 | -1.063822 | 0404304  |
| L2D.     | 1347777  | .2353863 | -0.57 | 0.567 | 5961264   | .3265711 |
| L3D.     | 1779309  | .2042096 | -0.87 | 0.384 | 5781744   | .2223125 |
| logM3    |          |          |       |       |           |          |
| LD.      | 1.359525 | .5549124 | 2.45  | 0.014 | .271917   | 2.447134 |
| L2D.     | 0451333  | .5709019 | -0.08 | 0.937 | -1.16408  | 1.073814 |
| L3D.     | 3831105  | .5396701 | -0.71 | 0.478 | -1.440844 | .6746236 |
| _cons    | 0037877  | .0100119 | -0.38 | 0.705 | 0234107   | .0158353 |
|          |          |          |       |       |           |          |

| D_logEXR |          |          |       |       |          |          |
|----------|----------|----------|-------|-------|----------|----------|
| _cel     |          |          |       |       |          |          |
| L1.      | 0442786  | .0140376 | -3.15 | 0.002 | 0717917  | 0167655  |
| logPED   |          |          |       |       |          |          |
| LD.      | .05743   | .0174503 | 3.29  | 0.001 | .0232281 | .0916319 |
| L2D.     | .0187326 | .0156326 | 1.20  | 0.231 | 0119068  | .049372  |
| L3D.     | .024774  | .0130541 | 1.90  | 0.058 | 0008115  | .0503595 |
| logIFL   |          |          |       |       |          |          |
| LD.      | 0076736  | .0153341 | -0.50 | 0.617 | 0377278  | .0223806 |
| L2D.     | .0249175 | .0160032 | 1.56  | 0.119 | 0064482  | .0562832 |
| L3D.     | 0054438  | .0158353 | -0.34 | 0.731 | 0364805  | .0255929 |
| logDR    |          |          |       |       |          |          |
| LD.      | 0223568  | .0182938 | -1.22 | 0.222 | 058212   | .0134983 |
| L2D.     | 0053828  | .0181213 | -0.30 | 0.766 | 0409     | .0301343 |
| L3D.     | .0250849 | .0175802 | 1.43  | 0.154 | 0093717  | .0595415 |
| logEXR   |          |          |       |       |          |          |
| LD.      | 1145729  | .1064855 | -1.08 | 0.282 | 3232807  | .0941348 |
| L2D.     | .0714096 | .1060113 | 0.67  | 0.501 | 1363687  | .2791879 |
| L3D.     | 052128   | .0947266 | -0.55 | 0.582 | 2377888  | .1335328 |
| logDD    |          |          |       |       |          |          |
| LD.      | 0921775  | .0380713 | -2.42 | 0.015 | 1667959  | 0175592  |
| L2D.     | .0041868 | .0386287 | 0.11  | 0.914 | 0715241  | .0798976 |
| L3D.     | 0398493  | .0388042 | -1.03 | 0.304 | 1159042  | .0362056 |
| logRM    |          |          |       |       |          |          |
| LD.      | .036877  | .0490228 | 0.75  | 0.452 | 059206   | .13296   |
| L2D.     | .0577998 | .0441994 | 1.31  | 0.191 | 0288294  | .144429  |
| L3D.     | .0320084 | .0383452 | 0.83  | 0.404 | 0431468  | .1071637 |
| logM3    |          |          |       |       |          |          |
| LD.      | .3601924 | .104198  | 3.46  | 0.001 | .1559681 | .5644167 |
| L2D.     | .0510267 | .1072004 | 0.48  | 0.634 | 1590823  | .2611356 |
| L3D.     | .0765407 | .1013359 | 0.76  | 0.450 | 122074   | .2751554 |
| _cons    | 0012744  | .00188   | -0.68 | 0.498 | 0049591  | .0024103 |

D\_logDD

| TOGDD  |          |             |       |         |           |          |
|--------|----------|-------------|-------|---------|-----------|----------|
| ce1    |          |             |       |         |           |          |
| L1.    | .1027924 | .0354574    | 2.90  | 0.004   | .0332971  | .1722877 |
|        |          |             |       |         |           |          |
|        |          |             |       |         |           |          |
| logPED | 0007000  | 0440775     | 0 74  | 0 457   | 1101000   | 0505071  |
| LD.    | 0327932  | .0440775    | -0.74 | 0.457   | 1191836   | .0535971 |
| L2D.   | .0138022 | .0394864    | 0.35  | 0.727   | 0635898   | .0911942 |
| L3D.   | 003355   | .0329732    | -0.10 | 0.919   | 0679813   | .0612714 |
|        |          |             |       |         |           |          |
| logIFL |          |             |       |         |           |          |
| LD.    | 0032771  | .0387322    | -0.08 | 0.933   | 0791909   | .0726367 |
| L2D.   | 0375831  | .0404224    | -0.93 | 0.352   | 1168096   | .0416434 |
| L3D.   | 0289585  | .0399984    | -0.72 | 0.469   | 1073539   | .049437  |
|        |          |             |       |         |           |          |
| logDR  |          |             |       |         |           |          |
| LD.    | 0277482  | .0462082    | -0.60 | 0.548   | 1183146   | .0628182 |
| L2D.   | 0346813  | .0457727    | -0.76 | 0.449   | 1243941   | .0550314 |
|        |          |             |       |         |           |          |
| L3D.   | .0024067 | .0444058    | 0.05  | 0.957   | 0846271   | .0894405 |
| 1      |          |             |       |         |           |          |
| logEXR | 0500011  | 0.000.001.4 | 0 1 0 | 0 0 5 0 | 45 60 504 |          |
| LD.    | .0503011 | .2689714    | 0.19  | 0.852   | 4768731   | .5774753 |
| L2D.   | 2619813  | .2677736    | -0.98 | 0.328   | 7868078   | .2628452 |
| L3D.   | 1722278  | .2392697    | -0.72 | 0.472   | 6411878   | .2967322 |
|        |          |             |       |         |           |          |
| logDD  |          |             |       |         |           |          |
| LD.    | 0009096  | .0961641    | -0.01 | 0.992   | 1893879   | .1875686 |
| L2D.   | 0941637  | .0975721    | -0.97 | 0.335   | 2854015   | .0970741 |
| L3D.   | 0378942  | .0980155    | -0.39 | 0.699   | 2300011   | .1542126 |
|        |          |             |       |         |           |          |
| logRM  |          |             |       |         |           |          |
| LD.    | 3028579  | .1238266    | -2.45 | 0.014   | 5455537   | 0601622  |
| L2D.   | 211933   | .1116431    | -1.90 | 0.058   | 4307494   | .0068833 |
| L3D.   | 2686903  | .096856     | -2.77 | 0.006   | 4585246   | 078856   |
| 190.   | .2000903 | .090090     | 2.11  | 0.000   | .4303240  | .070050  |
| logM3  |          |             |       |         |           |          |
| LD.    | .0468378 | .2631934    | 0.18  | 0.859   | 4690117   | .5626873 |
|        |          |             |       |         |           |          |
| L2D.   | .3694702 | .2707771    | 1.36  | 0.172   | 1612432   | .9001836 |
| L3D.   | .5648156 | .255964     | 2.21  | 0.027   | .0631354  | 1.066496 |
|        |          |             | 0.45  | 0.000   |           | 0104455  |
| _cons  | .0101099 | .0047486    | 2.13  | 0.033   | .0008028  | .0194171 |
|        |          |             |       |         |           |          |

| D | loq | RM |
|---|-----|----|

|              | l                 |          |       |                |         |          |
|--------------|-------------------|----------|-------|----------------|---------|----------|
| D_logRM      |                   |          |       |                |         |          |
| _cel<br>L1.  | 1017703           | .0433721 | -2.35 | 0.019          | 1867781 | 0167624  |
| • 14         | 1017703           | .0433721 | -2.33 | 0.019          | 100//01 | 010/024  |
| logPED       |                   |          |       |                |         |          |
| LD.          | .0219111          | .0539164 | 0.41  | 0.684          | 0837631 | .1275853 |
| L2D.         | .0186352          | .0483005 | 0.39  | 0.700          | 0760319 | .1133024 |
| L3D.         | 0124067           | .0403334 | -0.31 | 0.758          | 0914587 | .0666454 |
|              |                   |          |       |                |         |          |
| logIFL       |                   |          |       |                |         |          |
| LD.          | 0359691           | .0473779 | -0.76 | 0.448          | 1288281 | .05689   |
| L2D.         | .0064229          | .0494454 | 0.13  | 0.897          | 0904883 | .1033342 |
| L3D.         | .0830017          | .0489267 | 1.70  | 0.090          | 0128929 | .1788963 |
|              |                   |          |       |                |         |          |
| logDR        |                   |          |       |                |         |          |
| LD.          | 0622929           | .0565226 | -1.10 | 0.270          | 1730753 | .0484894 |
| L2D.         | .0469892          | .0559899 | 0.84  | 0.401          | 062749  | .1567274 |
| L3D.         | 0549716           | .054318  | -1.01 | 0.312          | 1614329 | .0514896 |
|              |                   |          |       |                |         |          |
| logEXR       |                   |          |       |                |         |          |
| LD.          | .1297989          | .3290103 | 0.39  | 0.693          | 5150495 | .7746474 |
| L2D.         | 1774342           | .3275452 | -0.54 | 0.588          | 8194109 | .4645426 |
| L3D.         | .3667811          | .2926788 | 1.25  | 0.210          | 2068587 | .9404209 |
|              |                   |          |       |                |         |          |
| logDD        |                   |          |       |                |         |          |
| LD.          | .0096593          | .1176296 | 0.08  | 0.935          | 2208905 | .2402091 |
| L2D.         | .0193977          | .1193519 | 0.16  | 0.871          | 2145277 | .253323  |
| L3D.         | 0861298           | .1198942 | -0.72 | 0.473          | 3211181 | .1488586 |
|              |                   |          |       |                |         |          |
| logRM        | 045067            | 1514660  | 0 20  | 0 7 6 5        | 2421266 | 0516005  |
| LD.          | 045267            | .1514669 | -0.30 | 0.765          | 3421366 | .2516025 |
| L2D.<br>L3D. | 1639566<br>287324 | .1365637 | -1.20 | 0.230<br>0.015 | 4316166 | .1037033 |
| . ЧСЛ        | 28/324            | .1184759 | -2.43 | 0.015          | 5195326 | 0551154  |
| logM3        |                   |          |       |                |         |          |
| LD.          | .0494923          | .3219426 | 0.15  | 0.878          | 5815036 | .6804883 |
| L2D.         | .6181813          | .3312192 | 1.87  | 0.062          | 0309964 | 1.267359 |
| L3D.         | .3783564          | .3130995 | 1.21  | 0.227          | 2353074 | .9920202 |
|              |                   |          |       | /              | , .     |          |
| cons         | 0020042           | .0058086 | -0.35 | 0.730          | 0133888 | .0093805 |
|              | I                 |          |       |                |         |          |

|             | I        |          |       |       |           |          |
|-------------|----------|----------|-------|-------|-----------|----------|
| D_logM3     |          |          |       |       |           |          |
| _cel        | 0074052  | .0168451 | 0.44  | 0.657 | 0255304   | 040501   |
| L1.         | .0074853 | .0168451 | 0.44  | 0.657 | 0255304   | .040501  |
| logPED      |          |          |       |       |           |          |
| LD.         | .0176633 | .0209403 | 0.84  | 0.399 | 0233789   | .0587055 |
| L2D.        | 0074344  | .0187591 | -0.40 | 0.692 | 0442017   | .0293328 |
| L3D.        | 0194397  | .0156649 | -1.24 | 0.215 | 0501423   | .0112629 |
|             |          |          |       |       |           |          |
| logIFL      |          |          |       |       |           |          |
| LD.         | 0063591  | .0184008 | -0.35 | 0.730 | 0424241   | .0297058 |
| L2D.        | .0168929 | .0192038 | 0.88  | 0.379 | 0207458   | .0545317 |
| L3D.        | .0019742 | .0190024 | 0.10  | 0.917 | 0352698   | .0392182 |
|             |          |          |       |       |           |          |
| logDR       |          |          |       |       |           |          |
| LD.         | 0420894  | .0219525 | -1.92 | 0.055 | 0851155   | .0009367 |
| L2D.        | 0013333  | .0217456 | -0.06 | 0.951 | 0439538   | .0412873 |
| L3D.        | 0337433  | .0210962 | -1.60 | 0.110 | 0750912   | .0076045 |
|             |          |          |       |       |           |          |
| logEXR      |          |          |       |       |           |          |
| LD.         | 1290106  | .1277824 | -1.01 | 0.313 | 3794595   | .1214383 |
| L2D.        | .2784149 | .1272134 | 2.19  | 0.029 | .0290813  | .5277485 |
| L3D.        | .2874149 | .1136718 | 2.53  | 0.011 | .0646223  | .5102075 |
|             |          |          |       |       |           |          |
| logDD       |          |          |       |       |           |          |
| LD.         | .0521318 | .0456855 | 1.14  | 0.254 | 0374101   | .1416737 |
| L2D.        | .0069406 | .0463544 | 0.15  | 0.881 | 0839123   | .0977935 |
| L3D.        | 0506204  | .046565  | -1.09 | 0.277 | 1418862   | .0406454 |
| logRM       |          |          |       |       |           |          |
| LD.         | .0185203 | .0588273 | 0.31  | 0.753 | 0967792   | .1338197 |
| LD.<br>L2D. | 0235346  | .0530392 | -0.44 | 0.657 | 1274895   | .0804203 |
| L3D.        | 0443915  | .0460142 | -0.96 | 0.335 | 1345777   | .0457946 |
| 100.        | .0445515 | .0100112 | 0.90  | 0.000 | .1010//// | .010/010 |
| logM3       |          |          |       |       |           |          |
| LD.         | 0821935  | .1250374 | -0.66 | 0.511 | 3272624   | .1628753 |
| L2D.        | .1740319 | .1286403 | 1.35  | 0.176 | 0780984   | .4261623 |
| L3D.        | 116009   | .1216029 | -0.95 | 0.340 | 3543463   | .1223283 |
|             |          |          |       |       |           |          |
| cons        | .0076975 | .002256  | 3.41  | 0.001 | .0032759  | .0121191 |
|             | I T      |          |       |       |           |          |

| Granger causality Wald tes | sts      |        |    |                |
|----------------------------|----------|--------|----|----------------|
| Equation                   | Excluded | chi2   | df | Prob > chi2    |
| logPED                     | logIFL   | 11.211 | 4  | 0.024          |
| logPED                     | logDR    | 7.7695 | 4  | 0.100          |
| logPED                     | logEXR   | 58.089 | 4  | 0.000          |
| logPED                     | logDD    | 19.21  | 4  | 0.001          |
| logPED                     | logRM    | 5.3959 | 4  | 0.249          |
| logPED                     | logM3    | 10.096 | 4  | 0.039          |
| logPED                     | ALL      | 116.09 | 24 | 0.000          |
|                            |          |        |    |                |
| logIFL                     | logPED   | 8.1029 | 4  | 0.088          |
| logIFL                     | logDR    | 7.0574 | 4  | 0.133          |
| logIFL                     | logEXR   | 9.1526 | 4  | 0.057          |
| logIFL                     | logDD    | 7.7039 | 4  | 0.103          |
| logIFL                     | logRM    | 2.0344 | 4  | 0.729          |
| logIFL                     | logM3    | 4.4629 | 4  | 0.347          |
| logIFL                     | ALL      | 38.8   | 24 | 0.029          |
| logDR                      | logPED   | 1.2271 | 4  | 0.874          |
| logDR                      | logIFL   | 7.2353 | 4  | 0.124          |
| logDR                      | logEXR   | .4349  | 4  | 0.980          |
| logDR                      | logDD    | 5.3905 | 4  | 0.250          |
| logDR                      | logRM    | 16.753 | 4  | 0.002          |
| logDR                      | logM3    | 14.4   | 4  | 0.006          |
| logDR                      | ALL      | 46.781 | 24 | 0.004          |
|                            |          |        |    |                |
| logEXR                     | logPED   | 13.627 | 4  | 0.009          |
| logEXR                     | logIFL   | 9.0086 | 4  | 0.061          |
| logEXR                     | logDR    | 6.9452 | 4  | 0.139          |
| logEXR                     | logDD    | 5.2566 | 4  | 0.262          |
| logEXR                     | logRM    | 8.6427 | 4  | 0.071          |
| logEXR                     | logM3    | 21.804 | 4  | 0.000          |
| logEXR                     | ALL      | 63.858 | 24 | 0.000          |
| logDD                      | logPED   | 13.56  | 4  | 0.009          |
| logDD                      | logIFL   | 9.0853 | 4  | 0.059          |
| logDD                      | logDR    | 4.2019 | 4  | 0.379          |
| logDD                      | logEXR   | 6.9659 | 4  | 0.138          |
| logDD                      | logRM    | 9.3362 | 4  | 0.053          |
| logDD                      | logM3    | 6.9693 | 4  | 0.138          |
| logDD                      | ALL      | 51.139 | 24 | 0.001          |
| logRM                      | logPED   | 2.1902 | 4  | 0.701          |
| logRM                      | logIFL   | 3.051  | 4  | 0.549          |
| logRM                      | logDR    | 21.364 | 4  | 0.000          |
| logRM                      | logEXR   | 6.3205 | 4  | 0.176          |
| logRM                      | logDD    | 2.7218 | 4  | 0.605          |
|                            | logM3    | 19.619 | 4  |                |
| logRM                      | -        |        |    | 0.001<br>0.000 |
| logRM                      | ALL      | 58.181 | 24 | 0.000          |
| logM3                      | logPED   | 4.6448 | 4  | 0.326          |
| logM3                      | logIFL   | 3.6911 | 4  | 0.449          |
| logM3                      | logDR    | 21.339 | 4  | 0.000          |
| logM3                      | logEXR   | 19.685 | 4  | 0.001          |
| logM3                      | logDD    | 4.2572 | 4  | 0.372          |
| logM3                      | logRM    | 3.9344 | 4  | 0.415          |
| logM3                      | ALL      | 69.964 | 24 | 0.000          |
| L                          |          | I      |    |                |

Granger causality Wald tests

.

# **APPENDIX – II**

Data Used

| Date   | Inflation | Private<br>Debt | Discount<br>rate | Exchange<br>Rate | Domestic<br>Debt | Reserve<br>Money | M3         |
|--------|-----------|-----------------|------------------|------------------|------------------|------------------|------------|
| Jan-10 | 10.90%    | 1014.4          | 7.58%            | 1,323.6          | 1,903.5          | 3,017,457        | 8,931,437  |
| Feb-10 | 9.60%     | 1510.9          | 7.58%            | 1,326.0          | 1,905.7          | 3,129,440        | 9,010,488  |
| Mar-10 | 9.00%     | 979.17          | 7.58%            | 1,330.2          | 1,938.1          | 3,120,330        | 9,075,096  |
| Apr-10 | 9.40%     | 973.7           | 7.58%            | 1,343.5          | 1,921.4          | 3,072,312        | 9,359,922  |
| May-10 | 7.90%     | 1447.3          | 7.58%            | 1,376.0          | 1,919.1          | 3,030,861        | 9,284,484  |
| Jun-10 | 7.20%     | 1521.8          | 7.58%            | 1,379.4          | 2,009.5          | 3,369,593        | 9,798,081  |
| Jul-10 | 6.30%     | 1760.5          | 7.58%            | 1,382.3          | 2,064.4          | 3,455,297        | 10,233,334 |
| Aug-10 | 6.60%     | 1638.3          | 7.58%            | 1,470.6          | 2,071.2          | 3,427,146        | 10,511,409 |
| Sep-10 | 4.50%     | 1749.6          | 7.58%            | 1,483.8          | 2,277.5          | 3,433,324        | 10,348,718 |
| Oct-10 | 4.19%     | 1784.7          | 7.58%            | 1,482.0          | 2,276.6          | 3,480,122        | 10,691,154 |
| Nov-10 | 5.52%     | 1242.7          | 7.58%            | 1,470.5          | 2,288.3          | 3,526,427        | 10,910,407 |
| Dec-10 | 5.56%     | 1246.1          | 7.58%            | 1,453.5          | 2,309.9          | 3,497,850        | 11,012,664 |
| Jan-11 | 6.42%     | 1844.3          | 7.58%            | 1,483.3          | 2,261.6          | 3,591,099        | 11,203,232 |
| Feb-11 | 7.49%     | 1760.9          | 7.58%            | 1,500.5          | 2,244.6          | 3,644,122        | 11,183,151 |
| Mar-11 | 8.03%     | 1796.4          | 7.58%            | 1,490.8          | 2,303.3          | 3,554,159        | 11,234,052 |
| Apr-11 | 8.58%     | 1829.4          | 7.58%            | 1,497.1          | 2,292.8          | 3,637,591        | 11,433,853 |
| May-11 | 9.74%     | 1831.6          | 7.58%            | 1,518.3          | 2,307.0          | 3,637,266        | 11,610,376 |
| Jun-11 | 10.90%    | 1925.2          | 7.58%            | 1,572.1          | 2,364.1          | 3,785,468        | 11,957,941 |
| Jul-11 | 13.00%    | 1873            | 7.58%            | 1,569.7          | 2,381.0          | 3,903,575        | 12,111,605 |
| Aug-11 | 14.10%    | 1905.8          | 7.58%            | 1,604.8          | 2,460.5          | 4,054,870        | 12,759,599 |
| Sep-11 | 16.80%    | 1981.2          | 7.58%            | 1,631.2          | 2,448.1          | 4,239,423        | 12,800,865 |
| Oct-11 | 17.90%    | 1955.3          | 9.58%            | 1,646.4          | 2,482.1          | 4,200,960        | 13,438,230 |
| Nov-11 | 19.20%    | 1945.3          | 12.00%           | 1,655.9          | 2,577.7          | 4,126,094        | 13,211,385 |
| Dec-11 | 19.75%    | 1810.4          | 12.00%           | 1,566.7          | 2,469.7          | 4,111,917        | 13,021,322 |
| Jan-12 | 19.73%    | 1777.4          | 12.00%           | 1,575.7          | 2,599.8          | 4,305,279        | 13,005,693 |
| Feb-12 | 19.40%    | 1793.2          | 12.00%           | 1,573.6          | 2,602.9          | 4,073,258        | 13,008,302 |
| Mar-12 | 18.96%    | 1800.7          | 12.00%           | 1,575.0          | 2,672.3          | 3,881,051        | 13,001,660 |
| Apr-12 | 18.66%    | 1842.8          | 12.00%           | 1,568.4          | 2,647.6          | 3,991,853        | 12,985,684 |
| May-12 | 18.24%    | 1825.2          | 12.00%           | 1,570.8          | 2,663.8          | 4,236,357        | 13,082,593 |
| Jun-12 | 17.40%    | 1914.6          | 12.00%           | 1,568.9          | 2,650.6          | 4,591,635        | 13,263,353 |
| Jul-12 | 15.72%    | 1911.6          | 12.00%           | 1,574.8          | 2,857.8          | 4,514,139        | 13,558,428 |
| Aug-12 | 14.91%    | 1921.6          | 12.00%           | 1,567.2          | 2,918.0          | 4,627,805        | 13,812,100 |

| Sep-12 | 13.51% | 1956.3  | 12.00% | 1,569.3 | 2,947.1 | 4,492,021 | 14,022,575 |
|--------|--------|---------|--------|---------|---------|-----------|------------|
| Oct-12 | 12.89% | 1921.2  | 12.00% | 1,572.0 | 3,268.3 | 4,695,012 | 14,228,623 |
| Nov-12 | 12.11% | 1886.9  | 12.00% | 1,571.4 | 3,481.3 | 4,839,768 | 14,601,694 |
| Dec-12 | 12.06% | 1879.3  | 12.00% | 1,571.6 | 3,277.8 | 4,525,609 | 14,647,105 |
| Jan-13 | 10.93% | 1906.6  | 12.00% | 1,584.2 | 3,246.4 | 4,699,774 | 14,426,146 |
| Feb-13 | 10.37% | 2080.5  | 12.00% | 1,587.5 | 3,310.0 | 4,663,432 | 14,631,491 |
| Mar-13 | 9.77%  | 2030.01 | 12.00% | 1,590.5 | 3,424.9 | 4,715,508 | 14,823,339 |
| Apr-13 | 9.38%  | 2091.2  | 12.00% | 1,591.0 | 3,447.3 | 4,816,614 | 14,916,445 |
| May-13 | 8.34%  | 2119.3  | 12.00% | 1,599.4 | 3,554.1 | 4,976,787 | 15,184,353 |
| Jun-13 | 7.64%  | 2150.5  | 12.00% | 1,602.7 | 3,519.4 | 4,917,715 | 15,241,122 |
| Jul-13 | 7.54%  | 2302.6  | 12.00% | 1,613.4 | 3,712.0 | 5,286,989 | 15,855,708 |
| Aug-13 | 6.75%  | 2050.6  | 12.00% | 1,611.4 | 3,791.6 | 5,127,548 | 15,945,038 |
| Sep-13 | 6.06%  | 2059.8  | 12.00% | 1,604.7 | 3,829.7 | 5,091,313 | 15,932,883 |
| Oct-13 | 6.32%  | 2223.1  | 12.00% | 1,601.5 | 3,756.9 | 5,343,350 | 15,967,500 |
| Nov-13 | 6.24%  | 2226.8  | 12.00% | 1,607.4 | 3,713.6 | 5,210,854 | 16,019,409 |
| Dec-13 | 5.56%  | 2257.4  | 16.00% | 1,574.0 | 3,831.7 | 5,027,784 | 16,106,768 |
| Jan-14 | 6.03%  | 2313.6  | 16.00% | 1,614.4 | 3,867.4 | 5,202,593 | 16,448,010 |
| Feb-14 | 5.99%  | 2085.4  | 16.00% | 1,619.5 | 3,826.2 | 5,401,671 | 16,540,734 |
| Mar-14 | 6.10%  | 2102.4  | 16.00% | 1,630.7 | 3,964.2 | 5,113,896 | 16,549,584 |
| Apr-14 | 6.30%  | 2122.4  | 16.00% | 1,633.2 | 4,005.6 | 5,461,748 | 17,021,124 |
| May-14 | 6.49%  | 2155.8  | 16.00% | 1,644.4 | 3,984.2 | 5,474,901 | 17,283,044 |
| Jun-14 | 6.41%  | 2218.6  | 16.00% | 1,649.7 | 3,961.7 | 5,647,773 | 17,656,512 |
| Jul-14 | 6.54%  | 2276    | 16.00% | 1,654.8 | 3,932.9 | 5,901,322 | 17,900,343 |
| Aug-14 | 6.70%  | 2062.4  | 16.00% | 1,660.6 | 4,299.2 | 5,916,258 | 18,160,616 |
| Sep-14 | 6.63%  | 2076.7  | 16.00% | 1,665.1 | 4,481.7 | 5,799,093 | 18,274,252 |
| Oct-14 | 5.88%  | 2072.2  | 16.00% | 1,683.4 | 4,546.1 | 5,898,853 | 18,604,641 |
| Nov-14 | 5.84%  | 1937.4  | 16.00% | 1,727.9 | 4,438.6 | 6,032,788 | 18,807,756 |
| Dec-14 | 4.75%  | 1916    | 16.00% | 1,725.8 | 4,335.3 | 5,909,475 | 18,614,151 |
| Jan-15 | 3.98%  | 2,000.8 | 16.00% | 1,782.0 | 4,198.0 | 5,691,919 | 18,740,903 |
| Feb-15 | 4.18%  | 2,059.1 | 16.00% | 1,781.5 | 4,162.5 | 5,943,814 | 18,790,161 |
| Mar-15 | 4.30%  | 2,084.5 | 16.00% | 1,788.1 | 4,255.0 | 5,587,042 | 18,740,559 |
| Apr-15 | 4.50%  | 2,092.1 | 16.00% | 1,829.0 | 4,192.8 | 5,748,783 | 19,486,117 |
| May-15 | 5.30%  | 2,087.3 | 16.00% | 1,997.2 | 3,859.2 | 5,862,539 | 19,871,084 |
| Jun-15 | 6.10%  | 2,134.3 | 16.00% | 2,020.3 | 3,808.6 | 6,575,646 | 19,964,284 |
| Jul-15 | 6.45%  | 2,146.8 | 16.00% | 2,086.4 | 3,593.3 | 6,709,751 | 20,831,713 |
| Aug-15 | 6.36%  | 2,155.9 | 16.00% | 2,133.8 | 3,647.7 | 6,775,987 | 21,388,950 |
| Sep-15 | 6.08%  | 2,148.3 | 16.00% | 2,150.0 | 3,640.1 | 6,538,226 | 21,281,793 |
| Oct-15 | 6.30%  | 2,105.7 | 16.00% | 2,159.9 | 3,697.0 | 6,677,246 | 21,689,511 |

| Nov-15 | 6.60% | 2,112.2 | 16.00% | 2,149.1 | 3,912.7 | 6,829,566 | 21,545,615 |
|--------|-------|---------|--------|---------|---------|-----------|------------|
| Dec-15 | 6.80% | 2,196.8 | 16.00% | 2,148.5 | 3,997.2 | 6,833,088 | 22,115,315 |
| Jan-16 | 6.50% | 2,927.6 | 16.00% | 2,177.3 | 4,046.4 | 6,617,895 | 21,778,943 |
| Feb-16 | 5.63% | 2,317.8 | 16.00% | 2,179.5 | 4,232.9 | 6,350,406 | 22,009,569 |
| Mar-16 | 5.42% | 2,724.1 | 16.00% | 2,179.6 | 4,345.1 | 6,522,555 | 21,648,496 |
| Apr-16 | 5.09% | 2,955.9 | 16.00% | 2,178.9 | 4,453.3 | 6,434,071 | 22,001,214 |
| May-16 | 5.20% | 3,143.2 | 16.00% | 2,182.3 | 4,595.1 | 6,464,718 | 22,252,445 |
| Jun-16 | 5.47% | 3,169.3 | 16.00% | 2,178.9 | 4,596.1 | 6,772,719 | 22,514,698 |
| Jul-16 | 5.10% | 3,287.9 | 16.00% | 2,179.0 | 4,597.1 | 6,565,100 | 22,281,357 |
| Aug-16 | 4.90% | 2,787.8 | 16.00% | 2,176.6 | 4,598.1 | 6,733,606 | 22,486,184 |
| Sep-16 | 4.50% | 3,330.3 | 16.00% | 2,171.9 | 4,599.1 | 6,619,015 | 22,262,101 |
| Oct-16 | 4.51% | 2,727.5 | 16.00% | 2,175.1 | 4,600.1 | 6,536,886 | 22,346,742 |
| Nov-16 | 4.80% | 3,368.5 | 16.00% | 2,171.0 | 4,601.1 | 6,930,242 | 22,630,782 |
| Dec-16 | 5.04% | 3,438.2 | 16.00% | 2,172.6 | 4,602.1 | 6,854,370 | 22,877,866 |
| Jan-17 | 5.17% | 3,466.6 | 16.00% | 2,222.0 | 4,717.5 | 6,562,493 | 22,783,437 |
| Feb-17 | 5.45% | 4,308.0 | 16.00% | 2,226.3 | 4,783.7 | 6,484,781 | 22,379,398 |
| Mar-17 | 6.39% | 3,465.8 | 12.00% | 2,223.9 | 4,935.8 | 6,356,675 | 22,589,919 |
| Apr-17 | 6.42% | 3,507.2 | 12.00% | 2,227.3 | 4,973.9 | 6,486,270 | 22,840,701 |
| May-17 | 6.08% | 3,516.1 | 12.00% | 2,229.5 | 5,092.6 | 6,560,387 | 23,410,633 |
| Jun-17 | 5.44% | 3,654.4 | 12.00% | 2,230.1 | 5,285.2 | 6,827,067 | 23,865,382 |
| Jul-17 | 5.16% | 3,735.3 | 12.00% | 2,231.6 | 5,374.5 | 6,709,573 | 23,562,522 |
| Aug-17 | 5.02% | 3,722.9 | 9.00%  | 2,234.9 | 5,458.3 | 6,861,341 | 23,484,994 |
| Sep-17 | 5.27% | 3,794.1 | 9.00%  | 2,237.8 | 5,530.8 | 6,551,273 | 23,512,764 |
| Oct-17 | 5.08% | 3,843.2 | 9.00%  | 2,237.8 | 5,614.2 | 6,682,309 | 23,985,592 |
| Nov-17 | 4.43% | 3,858.3 | 9.00%  | 2,233.1 | 5,687.8 | 7,189,556 | 24,700,641 |
| Dec-17 | 3.97% | 3,912.4 | 9.00%  | 2,230.1 | 6,013.8 | 6,954,415 | 24,714,325 |
| Jan-18 | 3.97% | 3,884.7 | 9.00%  | 2,250.8 | 6,206.2 | 7,169,185 | 24,947,200 |
| Feb-18 | 4.08% | 4,308.0 | 9.00%  | 2,255.9 | 6,279.7 | 7,143,214 | 24,879,760 |
| Mar-18 | 3.93% | 4,345.3 | 9.00%  | 2,259.8 | 6,265.4 | 6,744,870 | 24,476,846 |
| Apr-18 | 3.82% | 4,324.7 | 9.00%  | 2,273.6 | 6,273.9 | 6,487,664 | 24,433,776 |
| May-18 | 3.64% | 4,427.4 | 9.00%  | 2,276.8 | 6,082.3 | 6,811,875 | 24,522,936 |
| Jun-18 | 3.40% | 4,467.8 | 9.00%  | 2,277.7 | 6,725.2 | 7,136,631 | 25,294,539 |
| Jul-18 | 3.30% | 4,455.6 | 9.00%  | 2,282.6 | 6,094.2 | 6,680,291 | 24,705,180 |
| Aug-18 | 3.27% | 4,583.5 | 7.00%  | 2,286.2 | 6,021.1 | 6,753,213 | 25,042,405 |
| Sep-18 | 3.36% | 4,657.5 | 7.00%  | 2,288.8 | 6,181.3 | 6,487,310 | 25,275,789 |
| Oct-18 | 3.15% | 4,684.9 | 7.00%  | 2,290.8 | 6,162.0 | 6,587,212 | 25,267,472 |
| Nov-18 | 2.96% | 4,937.6 | 7.00%  | 2,290.1 | 6,299.6 | 6,789,971 | 25,490,495 |
| Dec-18 | 3.30% | 4,897.4 | 7.00%  | 2,292.6 | 6,382.1 | 6,992,882 | 25,823,453 |

| 1 1    | l     |         |       |         |         |           |            |
|--------|-------|---------|-------|---------|---------|-----------|------------|
| Jan-19 | 3.00% | 4,914.2 | 7.00% | 2,294.8 | 6,223.3 | 6,707,176 | 25,763,119 |
| Feb-19 | 3.00% | 5,088.8 | 7.00% | 2,289.0 | 6,146.1 | 6,840,739 | 25,868,691 |
| Mar-19 | 3.13% | 5,094.4 | 7.00% | 2,289.5 | 6,162.2 | 6,688,376 | 25,702,829 |
| Apr-19 | 3.20% | 5,090.1 | 7.00% | 2,289.5 | 6,483.5 | 6,764,667 | 25,629,054 |
| May-19 | 3.52% | 5,105.8 | 7.00% | 2,288.6 | 6,778.7 | 6,973,944 | 25,945,565 |
| Jun-19 | 3.74% | 5,188.3 | 7.00% | 2,289.5 | 6,491.8 | 7,963,799 | 27,240,790 |
| Jul-19 | 3.71% | 5,424.3 | 7.00% | 2,289.2 | 5,957.2 | 7,262,425 | 26,930,010 |
| Aug-19 | 3.57% | 5,047.9 | 7.00% | 2,289.4 | 6,148.0 | 7,125,645 | 27,163,153 |
| Sep-19 | 3.39% | 5,002.4 | 7.00% | 2,289.4 | 6,141.7 | 7,218,809 | 27,640,720 |
| Oct-19 | 3.59% | 4,827.9 | 7.00% | 2,288.8 | 6,198.6 | 7,594,207 | 28,050,911 |
| Nov-19 | 3.76% | 4,648.1 | 7.00% | 2,288.3 | 6,313.6 | 7,411,187 | 28,164,329 |
| Dec-19 | 3.85% | 4,735.8 | 7.00% | 2,287.9 | 6,309.3 | 7,466,360 | 28,313,147 |
| Jan-20 | 3.72% | 4,835.2 | 7.00% | 2,288.6 | 6,396.1 | 7,200,780 | 28,114,151 |
| Feb-20 | 3.74% | 4,896.4 | 7.00% | 2,289.4 | 6,396.5 | 7,114,457 | 28,416,965 |
| Mar-20 | 3.42% | 4,831.3 | 7.00% | 2,289.9 | 6,432.9 | 6,876,559 | 28,242,438 |
| Apr-20 | 3.30% | 4,869.9 | 7.00% | 2,291.3 | 6,482.5 | 7,445,377 | 28,767,887 |
| May-20 | 3.20% | 4,853.5 | 5.00% | 2,291.9 | 6,575.3 | 7,509,786 | 29,030,805 |
| Jun-20 | 3.17% | 5,155.6 | 5.00% | 2,296.5 | 6,756.2 | 8,302,436 | 29,841,650 |
| Jul-20 | 3.30% | 5,196.8 | 5.00% | 2,297.8 | 6,576.5 | 7,609,514 | 29,338,833 |
| Aug-20 | 3.30% | 5,218.3 | 5.00% | 2,297.6 | 6,599.6 | 7,409,093 | 30,003,247 |
| Sep-20 | 3.10% | 5,259.4 | 5.00% | 2,297.6 | 6,665.9 | 6,999,421 | 29,429,181 |
| Oct-20 | 3.10% | 5,281.2 | 5.00% | 2,297.7 | 6,793.2 | 7,367,554 | 29,701,184 |
| Nov-20 | 3.00% | 5,423.7 | 5.00% | 2,297.7 | 6,912.3 | 7,437,491 | 29,620,910 |
| Dec-20 | 3.20% | 5,495.6 | 5.00% | 2,298.5 | 7,039.3 | 7,169,348 | 29,920,566 |