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ABSTRACT
A mathematical model for infectiology and optimal control of dengue fever disease
epidemics in Tanzania is formulated and analys€de model describes the
interaction between human and dengue fever mosquito populatitnsreatment.
Susceptible human population is divided into two, namely, careful and careless
susceptible. The model presents two disdieeee and two endemic equilibrium
points. The results show that the diseftee equilibrium point is locally and
globally asymptotically stable if thepeoduction number is less than unity. Endemic
equilibrium point is locally and globally asymptotically stable under certain
conditions using additive compound matrix and Lyapunov method respectively.
The model is fitted to data on dengue fever diseasegusiaximum likelihood
estimatorFrom the results, it is observed that the forecastedaitzgaly agre¢o the
actual dataSensitivity analysis of the model is implemented in order to investigate
the sensitivity of certain key parameters of dengue feigeladdransmission
Moreoverthe model consists of five control strategtbat is campaignaimed in
educating careless individuals, reducing mosghiman contactyemoving vector
breeding places, insecticide application and the control effort aimestiating the
maturation rate from larvae to adult. Optimal Control (OC) approach is used in order
to find the best strategy to fight the disease and minimize the Feosh the cost
effectiveness analysis, the results suggest tbatbination of removing vector
breeding places anmgducing maturation rate from larvae to adslthe most cost

effective of all the strategies for dengue fever disease control considered.
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CHAPTER ONE

INTRODUCTION
1.1  General Introduction
Dengue is a major hehltproblem found in tropical andubtropical climates
worldwide, mostly in urban ansemturban areaghttp://www.who. Int/mediacentre
[factsheets/fs17/en/].Dengue fever disease can cause a seveiigk@ullness, and
sometimes Dengue fever can vdrgm mild to severe. The me severe forms of
dengue feverinclude dengue heonrhagic fever and dengue shoslyndrome.
Dengue fevel(DF) is a vectoibome diseasdéransmitted by female Aed aegypti
and Aedes albopictusmosquitoes because they require blood meal for the
development of their eggs. Foulifferent serotypes can causengue fever. A
human infectd by one serotype, on recovegains total i)munity to tha serotype
and only partial antkransient immunity with respect to the other three. Prawgoir
reducing dengue virusansmission depends entirely the control of mosquito. The
spread of dengue is attributed ®xpanding geographic didbrtion of the four

dengue viruses and their mosquito vec{®sdrigueset al, 2010)

Dengue disease in more severe cases is associated with loss of appetite, vomiting,
high fever, headache, abdominal pain, shock and circulatory fdilerggue remains

a serious threat for human health in Tanadmecausean effective dengue vaccine

and antiviral treatment are not currently availaljRodrigueset al, 2013, Massawe

etal., 2015.

The presence of Aedes aegypti mosquito was first identified in DaltagnSaity in

Tanzania followed by few regions in the year 2014. In July 2010 for the first time in



Tanzania, an outbreak of dengue fever was reported and over 40 people were

infected. From 2010 to 26 thenumber of infected cases has been increasing.

Moreover in the year 2014 the government of Tanzania announced the danger of the
disease where people were alerted about the disease and the precaution to, be taken
symptoms, prevention and lifesaving like getting plenty of bed rest, drinking lots of
fluids, taking medicine to reduce fever, taking pain relievers with acetaminophen and
avoid those containing aspirin, and if is most severe fahat is Dengue
hemorrhagic fever and Dengue shock syndrome, early and aggressive emergency
treatment can be lifesang by,

i) Emergency treatment with fluid and electrolyte replacement,

i) Blood pressure monitoring,

iif) Transfusion to reduce blood loss,

Management of severe form of dengue hemorrhagic fever frequently requires
hospitalization, for example treating electroljtgbalances caused by kidney failure
can be difficult, because many medicines lower some electrolyte levels while raising

other levels. Doctor needs regularly monitor electrolyte levels

In the year 2014 between January and December and January t@04,i11025
people were infected with dengue fever disease and 4 died of the disease from Dar es
Salaam city. The regions which were affected with Dengue fever disease are Dar es

Salaam with 1014 cases (Kinondd@ill, Temekeld4, and llala269), Kigoma3,



Mwanza2, Mbeya2Kilimanjaro 3 and Njombel (ministry of health and social

welfare in TanzaniaMassaweetal., 20195.

Currently 2.5 billion people living in areas at risk of DF transmission, each year, an
estimated 100 million cases of dengue fever occur worldwide (Gibbons and Vaughn,
2002; WHO, 2002). The disease create many burdens on families as some bread
winners andalso the governments which have to spent millions of money in
diagnosing the disease, purchasing of pesticides to kill the mosquitoes and
purchasing drugs to treat the patients and the other intervention schieimd¢kese
effects of the disease that Icilr continuous research into the prevention and control

of the diseasby usingOptimal Control theory

Optimal Control theory is a powerful Mathematical tool used to make decisions on

how to control epidemiologic diseases like dengue fever diseasenaDontrol
theory is used to minimize the investmer
resources are always scarce. Quantitative methods are applied to the optimization of
investments in the control of the epidemiologic disease, in order tonohtai

maxi mum of a beneyt from a yxed eaalount o
2010). Optimal control theory helps to find the percentage of the individuals who
should be treated as time evolves in a given epidemic model in order to minimize the
sprea of disease and the cost of implementing the treatment strategy (Lenhart &

Workman, 2007). Ira dynamical system, the optimal control problem for ordinary

differential equations is described by the state equatipft) = q(t, g, u( t)) where



u(t) is control andg; is the state variables which depend on the control variables.

The control enters the system of differential equations and adjusts the dynamics of
the state systenilhe goal is to adjust theontrol in order to maximize (or minimize)
a given objective function subject to some constraints (Lenhart & Workman, 2007).

The aim of the control is to minimize tldjective function
. o
.e.J =min Q(t’gi ,u(t)) dt (1.1)

subject to the differential equations and initial conditions. Such a minimipiniyas

is called an optimal control problem (Lenhart & Workman, 2007).

The principle technique for such an optimal control problem is to solve a set of
Anecessary conditionso that an opti mal
must satisfy. The nessary conditions is generated frotmetHamiltonian H, is

defined asH(t,g,,u,/ )= f(t, g, u) +/Q(t, g ,u; (1.2

Y H =integrand of (1.1)+ adjoint 3 Right handsi(RHS) of (1.2

Then it is intended to minimizel with respect tau = u” (optimalcontrol) and the

conditions is written in terms of the Hamiltonian:

pH _

~—=0atu Yf, +#q, €(Optimalitycondition),
U

a_w FJ7 e 4 (Adjoint equation

dt pg dt (gi gi+)( ) A )

/(t;) =0 (Transversality condition),

The dynamics of the state equatisrmyiven by

g =q(t g,u % g(t) 7 (Lenhart & Workman, 2007)



Mathematical models have played a major role in increasing our understanding of the
dynamics of infectious diseases. Several models have been proposed to study the
effects of some factorsn the transmission dynamics of these infectious diseases
including Dengue fever and to provide guidelines as to how the spread can be

controlled (Seidu and Makinde, 2014).

Mathematical modelling also became considerable important tool in the study of
epdemiology because it helps us to understand the observed epidemiological
patterns, disease control and provide understanding of the underlying mechanisms
which influence the spread of disease and may suggest control strategies €Dzaire
al., 2012).The epdemiological data and the economic cost of infectious diseases are
effective elements in evaluating the relevance of intervention programmes. In
economic situation, any intervention, like treatment, that has been found to be cost
effective would be fullyfunded without delay. Sometimes, funding and access to
treatment may be difficult as always faced with a number of constraints. Optimal
control theory to determine the optimal resource allocation as an epidemic progress
has been usedOptimal control theor is a powerful mathematical tool to make
decision involving complex dynamical systeifienhart & Workman, 2007)For
example, what percentage of the population should be treated as time evolves in a
given epidemic model to minimize both the number ofdtdd people and the cost

of implementing the treatment strategies. Optimal control problems have generated a
lot of interest from researchers all over the world, for instance in Thretnad,

(2010), the authors presented a mathematical model of optimatraio by

considering the cost of insecticide application, the cost of the production of irradiated



mosquitoes and their delivery as well as the social cost. In Rodegus (2012),

the authors used three vector control tools: larvicide, adulticidengghanical
control In Rodrigueset al, (2010), the authorpresented an application of optimal
control theory to Dengue epidemics. The dynamic model is described by a set of
nonlinear ordinary differential equations that depend on the dynamics ottigu®
mosquito, the number of infected individ
the mosquito. The cost functional depends not only on the costs of medical treatment
of the infected people but also on the costs related to educational and sanitary
campaigns. They used two approaches to solve the problem: one using optimal
control theory, another one by discretizing first the problem and then solving it with
nonlinear programming, leading to a decrease of infected mosquitoes and individuals
in less ime and with lower costs. In Rodrige¢al., (2011) the authorsised optimal
control theory for control of the vecttimat ismosquito. Their model consists of eight
mutually exclusive compartments representing the human and vector dynamics. It
also incudes a control parameter (insecticide) in order to fight the mosquito. In Ozair
et al, (2012) the authors used the optimal control theory in which their model
consists othree control measures; the pretres control to minimize vectenuman
contactsthe treatment control to the infected human, and the insecticide control to

the vector.

Not much research has been done in the study of epidemic models that calhsider
five controk, campaigraimed in educating careless individuals, reducing mosquito
human contactyemoving vector breeding placegsecticide applicationreducing

the maturation rate from larvae to aduolfTanzania.



Moreover in Massawet al, (2015), the authors presented a dynamical model that
studied the temporal model for dengueedise with treatment. In this work, the
model by Massawet al., (2015) will be extended, to includeate at which recovery
individual lose immunity, Positive change in behaviour for carless susceptible,
average daily biting rate per day for careful susbég average daily biting rate per
day for careless susceptible, average daily biting rate per day for mosquito and
Susceptibles with different behaviotimat is the dynamical system that incorporates
the effects of Careful and Careless human suscepiibkhe transmission of Dengue
fever disease, andhen the use oall five controk, that is campaignaimed in
educating careless individuals, reducing mosghiuman contactyemoving vector
breeding placesnsecticide applicatiomeducing the maturain rate from larva¢o

adult.

The model to include various intervention strategies to obtain an optimal control
problem wil!/ be analysed qualitatively u
The resulting optimal control problem is also solved numbyida gain more

insights into the implications of the interventions

1.2  Statement of the Problem:

The study is motivatelly the fact thathe disease is endemic and claims many lives.
Dengue fever (DF) is still endemic in many countries, in those with tropical and sub
tropical climates, including Tanzania. Areas ofgming transmission are as shown

below www.healthmap.org/dengue/index.php
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Figure 1.1: Map showing global distribution of Dengue fever

Figure 1.2: Map showing distribution of dengue in Africa and the Middle
East

Mathematical models of the dynamics of this diseasih wpecial emphasis on
Tanzaniaare unconmon.Few studies of optimal control has been carried out such as

those by Thomet al, (2010),Rodrigueset al, (2011),Wijayaeet al, (2013) Ozair



et al, (2012), which have applied optimal control theory. In particMassaweet

al., (2015), studiedch temporal model for dengue disease with treatment.

However, none of these studies have considéredate at which recovery individual
lose immunity, positive change in behaviour for carless susceptideage daily
biting rate per day for careful susceptiberage daily biting rate per day for
careless susceptiblaverage daily biting rate per day for mosqusasceptiblevith
different behaviourthat is the dynamical system that incorporates tffects of
careful andcareless human susceptible on the transmission of Denguedisgase,
andthen the use ddll five controk, that is campaignaimed in educating careless
individuals, reducing mosquibuman contactyemoving vector breeding places
insecticide applicatiomeducing the maturation rate from larvaeadult in Tanzania.
Therefore, this study intends to apply optimal conegp pr oach using Por
Maximum principle in order to find the best strategy to fight the disease and

minimize the cost.

1.3 ResearchObjectives

The main objective of this study is to formulate and analyse a mathematical model

for Infectiology and Optimal Control of Dengue Fever Disease.

The specific objectives are:

(i) To formulate a mathematical model fimfectiology and Optimal Control of
Dengue Fever Disease.

(i) To determine the existence and stabilities of the disease free equilibrium

point and endemic equilibrium point.



(iii)

(iv)

v)

1.4

(i

(ii)

(i)

(iv)

v)

1.5

10

To perform sensitivity analysis of mathematical models on the effect bf eac
parameter on the spread or control of Dengue fever disease.

To determine the impact of optimal control strategies on the spread of
Dengue fever disease in the perspeabifveealth care and the society.

To determine the impact of each embedda@dmeter on the model.

Research Hypotheses

It is possible to formulata mathematical model of optimal control of Dengue
fever disease for minimizing the spread of Dengue fever disease and
minimizing the cost involved in the control strategies.

The disease free equilibrium point is stable if the reproduction number is less
than unity and endemic equilibrium point is stable if the reproduction number
is greater than unity.

Sensitivity analysis will reveal the most sensitive parametethe spread of
Dengue fever disease.

Optimal control of Dengue fever disease can make the control strategies
affordable to the health care and the society.

The variation of the embedded parameters and the results of the model of

optimal control é Dengue fever disease are positively correlated.

Significance of the Study

The health as well as the socioeconomic impact of emerging aetherying

infectious diseases is significant. This study is significant for the following reasons:

The study will help health care sectors to optimize controls and minimizing the cost

of control strategies in order to reduce the spread of Dengue fever disease in the
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society. It will also help to improve control strategies for the occurrence of Dengue
fever disease outbreak tme community of Tanzania Through this study, public
health policy makers will be guided on optimal control strategies which they can
consider to control the disease. The study will be used to inform national health
authorities abot the burden of Dengue fever disease and the economic value of
implementing the campaigns of making the society to be careful in Dengue fever
transmission in Tanzania. Furthermore, the study will help educationalist to develop
educational seminars, workgbs or training programmes to educate people about the
control strategies of Dengue fever disease. The study will also act as a platform for
further research on optimal control of Dengue fever disease and form a base for

further studies of related problem.
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CHAPTER TWO

LITERATURE REVIEW

Dengue has become a serious health problem worldwide and researchers have
focused their attention on understanding how the dengue fever disease is treated. A

number of studies have been conducted to highlightah&ol of the disease.

Massaweet al, (2015)presented a mathematical model for the dengue fever disease
with treatment. Comprehensive mathematical techniques were used to analyse

stability of the model. It was found that the disease free equilibriint 5 locally

and globally asymptotically stable if the reproduction nun(kfgl) is less than unity.
Then the dengue fever model 6s endemic
reproduction number is greater than unity. Sensitivitlices of R, to the parameters

in the model were calculated. The sensitivity indices revealed that the average daily
biting, maturation rate from larvae to adult, transmission probability from human to
mosquito, number of larvae per human, transmission probability mosquito to

human and the number of eggs at each deposit per capita, when each one increases
keeping the other parameters constant they increase the valle infplying that

they increase the endemicity of the disease. While @idwemeters, average lifespan

of humans, natural mortality of larvae, mean viremic period and average lifespan of
adult mosquitoes, decrease the value Rf implying that they decrease the

endemicity of the disease. The numericatdations were performed using a set of

reasonable parameter values. The results suggest that treatment have a positive
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impact on the decrease of growth rate of dengue fever disease, and the number of

death is reduced.

Evanset al., (2014) presented a simple mathematical model to replicate the key
features of the sterile insect technique (SIT) for controlling pest species, with
particular reference to the mosquito Aedes aegypti, the main vector of dengue fever.
The spatial uniform equilibai of the model were identified and analysed.
Simulations were performed to analyse the impact of varying the number of release
sites, the interval between pulsed releases and the overall volume of sterile insect

releases on the effectiveness of SIT progras

Results show that, given a fixed volume of available sterile insects, increasing the
number of release sites and the frequency of releéasesasethe effectiveness of

SIT programmes. It was also observed that programmes may become completely
ineffective if the interval between pulsed releases is greater that a certain threshold
value and that, beyond a certain point, increasing the overall volume of sterile insects
released does not improve the effectiveness of SIT. It was also noted that insect
dispersal drives a rapid recolonisation of areas in which the species has been
eradicated and they argued that understanding the density dependent mortality of

released insects was necessary to develop efficienteffestive SIT programmes.

Aldila et al., (2013) presented an optimal control problem for a hasttor Dengue
transmission model. In the model, treatments with mosquito repellent were given to

adults and children and those who undergo treatment were classified in treated
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compartments. With thislassification, the model consists of 11 dynamic equations.
The basic reproductive ratio that represents the epidemic indicator was obtained from
the largest eigenvalue of the next generation matrix. The optimal control problem
was designed with four contrparameters, namely the treatment rates for children
and adult compartments, and the doa rates from both compartments. The cost
functional accounts for the total number of the infected persons, the cost of the
treatment, and the cost related to @dg the dropout rates. Numerical results for

the optimal controls and the related dynamics were shown for the case of epidemic
prevention and outbreak reduction strategies. The significance of the age structure
was indicated in the calculation of the iomdl cost. The higher cost value in the case
with no age structure is simply due to the use of adults unit treatment cost for all
persons. With a limited budget, it is much better to apply the treatment well before

the occurrence of the outbreak.

Thomeet al., (2010)presented a mathematical model to describe the dynamics of
mosquito population when sterile male mosquitoes (produced by irradiation) were
introduced as a biological control, besides the application of insecticide. The effort

was made to redecthe fertile female mosquitoes, by searching for the optimal

control considering the cost of insecticide application, the cost of the production of
irradiated mosquitoes and their delivery as well as the social cost (proportional to the
number of fertlizd f emal eds mosquitoes) . The opt
applying t he Pontryaginés Ma x i mum Prin

computation of optimal controls).
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The results were that high application of insecticide is needed at the beginning of the
contol, with an exponential decay. Furthermore, the release of insects in general
follows a bell shape distribution with an abrupt increasing and decreasing at the
extremes, and a plateau at the middle, except in the case when social cost is

increasing one hwned times.

Rodrigues et al, (2012) developed a model with six mutuakkclusive
compartments related to Dengue disease. In their model, there are three vector
control tools: larvicide, adulticide and mechanical control. The problem was studied
using anOptimal Control (OC) approach. Simulations based on elgacampaigns

to remove the vector breeding sites, and also simulations on the application of
insecticides (larvicide and adulticide), were made. It was shown that even with a low,
although continuos, index of control over the time, the results were surprisingly
positive. The adulticide was the most effective control, from the fact that with a low
percentage of insecticide, the basic reproduction number is kept below unity and the

infected number dfiumans was smaller.

Rodrigueset al, (2010)presented a model for the transmission of dengue disease. It
consists of eight mutualgxclusive compartments representing the human and
vector dynamics. It also includes a control parameter (insecticidefder to fight

the mosquitoes. The main goal of this work was to investigate the best way to apply
the control in order to effectively reduce the number of infected human and
mosquitoes. The numerical tests conclude that the best strategy for the infected

reduction was the weekly administration although it was the most expensive one
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(insecticide cost). The best result obtained was between 11 and 12 days, with the
insecticide amount in the closed interval from 7 to 8, confirming the amount of
constant controstrategy The 11 or 12 days between applications can be directly
related to the span of adult stage for the mosquitoes, an average of eleven days in an

urban environment.

Rodrigueset al, (2010)presented an application of optimal control theory togben
epidemics. The dynamic model was described by a set of nonlinear ordinary
differential equations that depend on the dynamic of the Dengue mosquito, the
number of infected individuals, and the
The cost functioal depends not only on the costs of medical treatment of the
infected people but also on the costs related to educational and sanitary campaigns.
Two approaches to solve the problem were considered: one using optimal control
theory, another one by disciBhg first the problem and then solving it with
nonlinear programmingThey observed that after four weeks the percentage of
infected mosquitoes vanishes and the number of infected individuals begin to

decrease, leading to much smaller cost wisiecticides and educational campaigns.

Ozair et al, (2012)presented anodel for the transmission dynamics of a vector
borne disease with nonlinear incidence rate. It was proved that the global dynamics
of the disease were completely determined by th&icbreproduction number. In

order to assess théfectiveness of disease control measures, the sensitivity analysis
of the basic reproductive numbét, and the endemic proportions with respect to

epidemiological and demographic parameters were provided. From the results of the
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sensitivity analysis, the model was modified to assess the impact of three control
measures; the preventive control to minimizzterhuman contacts, the treatment
control to the infected human, and the insecticide control to the vector. Analytically
the existence of the optimal control was established by the use of an optimal control
technigue and numerically it was solved by aarative method. Numerical
simulations and optimal analysis of the model show that restricted and proper use of
control measures might considerably decrease the number of infected humans in a
viable way. It was found from the sensitivity indices analyisé& the most sensitive
parameters were those of mosquito biting and death rates. The work was also
extended to assess the impact of some control measures. By the application of
optimal control theory, they derived and analysed the conditions for optimabto

of the disease with personal protection, treatment and spray of insecticides. From
their numerical results they found that dfeetive and optimal use of preventive
measure in the population without the use of larvicide against the vector wilknot b
beneficial if total elimination of the disease is desirable in the community. Control
programs that follow these strategies c#featively reduce the spread of a veetor

borne disease in the community.

Wijayaaet al, (2013)presented optimal control rdel of Aedes aegypti population
dynamics concerning classification of indemrtdoor life cycles. An optimal control
based on the mosquito population dynamics regulated by the two control measures:
the Temephos spraying and the thermal fogging. The bassquito offspring was
obtained from the maximum of the modulus of all elements in the spectrum of the

next generation matrix. Preliminary simulation result shows that the mogogsto
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equilibrium (referred to as the trivial equilibrium) was always unstdbl any

choice of the constant control measures undertaken in the simulation. Whereas the
constant control seems less applicable in everyday life, an optimal control was
required such that the balance between minimizing the cost for the control and

suppessing the trajectory of all compartments is achieved together.

From their optimal control simulation, the results show that all the controlled
trajectories lied under all the associated uncontrolled trajectories after performing the
optimal control. Fromevery specific scenario of the control implementation, one
needs to enhance the mass of the thermal fogging rather than the mass of the

Temephos spraying during the observation time.

Lashariet al., (2013) delt with a simple mathematical model for the transmission
dynamics of a vectelborne disease that incorporates both direct and indirect
transmission. The model was analysed using dynamical systems techniques and it
revealed the backward bifurcation fornse range of parameters. In such cases, the
reproduction number does not describe the necessary elimination effort of disease
rather the effort is described by the value of the critical parameter at the turning
point. The model was extended to assess tpadtnof some control measures, by re
formulating it as an optimal control problem with densigpendent demographic
parameters. The optimality system was derived and solved numerically to investigate
the cost effective control efforts in reducing the dierice of infectious hosts and
vectors.They also determined the cost effective strategies for combating the spread

of a vectofrborne infection in the community. By the application of Pontryagins
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Maximum Principle, they performed the optimal analysis of tbe-autonomous
control problem considering three controls, one for moseeitiliction strategies and

the other two for personal (human) protection and blood screening, respectively.
Furthermore, they minimized the number of infected hosts and the tatdlenwof

vector population by using three control variables. They investigated the dynamics
by an efficient numerical method based on optimal control to identify the best
strategy of a vectelborne disease in order to reduce infection and prevent vector hos
as well as direct contacts by using three controls. The results support the hypothesis
that preventive practices are very effective in reducing the incidence of infectious

hosts and vectors.

Fister et al, (2013) developed an optimal control frameworkrfan ordinary
differential equations model to investigate the introduction of sterile mosquitoes to
reduce the incidence of mosquiborne diseases. Existence of a solution given an
optimal strategy and the optimal control was determined in associatibntha
negative effects of the disease on the population while minimizing the cost due to
this control mechanism. Numerical simulations have shown the importance of effects
of the bounds on the release of sterile mosquitoes and the bounds on the likelihood
egg maturation. The optimal strategy was to maximize the use of habitat
modification or insecticide. A combination of techniques leads to a more rapid

elimination of the wild mosquito population.

Rodrigueset al, (2010) presenteca model for the transmission of dengue disease. It

consists of eight mutualgxclusive compartments representing the human and
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vector dynamics. It also includes a control parameter (adulticide spray) in order to
combat the mosquito. It was very difficuti control or eliminate the Aedes aegypti
mosquito because it makes adaptations to the environment and becomes resistant to
natural phenomena (e.g. droughts) or human interventions (e.g. control measures).
During outbreaks emergency, vector control measwan also include broad
application of insecticides. It is shown that, with a steady spray campaign it is
possible to reduce the number of infected humans and mosquitoes. Active
monitoring and surveillance of the natural mosquito population should acogmpa

control efforts to determine programme effectiveness.

Although manyDengue fevemmodels have been formulated so far, regarding the
effectivenessof the control strategies forDengue feverepidemics, none has
considered the effects @he use ofall five controk, that iscampaignaimed in

educating careless individuals, reducing mosghiman contactyemoving vector

breeding placesnsecticide applicatiormeducing the maturation rate from larviae

adult in Tanzania, byapplying Optimal Controlappr oach using Por
Maximum principle in order to find the best strategystrategieso fight the disease

and minimize the cost.
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CHAPTER THREE
A MODEL OF DENGUE FEVER WITH TREATMENT, TEMPORARY

IMMUNITY, CAREFUL AND CARELESS HUMAN SUSCEPTIBLE

3.1 Introduction

In this chapter, the Dengue fever disease mathematical rgdelassaweet al.,

(2015) which wastemporal model for dengue disease with treatmeilk be
extended to includéemporary immunity and Susceptibles with different behaviour
that isthe dynamical system that incorporates the effects of Careful and Careless
human susceptiblen the transmission of Dengue fever in the socielye model is
analysed to get the insight into its epidemiological and dynamical features necessary
for better understanding of the spread of Dengue fever infection in a population. The
epidemic threshold governing the elimination or persistence of Dengue fever
epidemic is determined and studied. Then local and global asymptotically stability of

diseasdree and endemic equilibrium poirdre studied. Numerical sensitivity is
carried out in which sensitivity indices of tledfective reproduction numbeR, to

each parameter in the model is calculated to determine which parametersghave h

impact onR, and should be targed for control strategies.

3.2 Formulation of the Model
In this section, a deterministic model is developed that describes the dynamics of
Dengue fever of population sizd (Rodrigueet al. 2013). Two types of population

are considered: humans and mosquito. The humans are divided into five mutually
exclusive compartments indexed by are given by: %(t) careful human

susceptible fidividual who areaware of the diseasend use protective measure)

%(t) careless human suscepél{individual who are not aware of the disease and

are not using protective measure), where the biting rate and infeittethe disease
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for careless susceptible is higher than that of careful susceptible indiidumeless

susceptible individual may change in behavitubecarefulat a rate ofg,, Ih(t)-
individuals capable of transmitting dengue fever disease to ofﬁe(ns);- individual
who are treated an, (t) individuals who have acquired immunity at timeThe

total number of human is constant, which means thét)=S (t)+ S (t)+

(t)+ T (1) R.(1).

Hence we formulate theS, |ITRS,  model to describe thgpassage of
individual from careful or careless susceptible cl&s _(t), to the infected class

1, (t), to the treatment class, (t), to the recovery clas®, (t), and then to the
careful susceptible clas§, , indicating thatindividual loseimmunity on recovery

from the infectionclass Careful and careless susceptible individual are obtamed
the populationat a constant rate oi- pand p respectively, it assumed that
immigration and emigration are not consideradd ten the population is
homogeneous, which means that every individual of a compartment is

homogeneously mixed with the other individuals

Individual acquire dengue fever infection after infected with dengue virus from

mosquito biting rateB, and B, for careful and careless susceptible with the force of

infection/, = B, thl\l—m and/, =B, thl\l_m respectively, b, is infection from
h h
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mosquito to human. It is assumed tBat- B, there is no natural protectiocior

human and mosquito.

However infected individual can dlgy the disease with the rate df,or can move

to the other class which is treatment at the ratf, of

Furthermoredengue fever infected inddual progress for treatment at the ratedbf

where the treated class move to the recovery class at a timed then lose

immunity at a ra¢ of g,. Human classes are assumed to die naturally at a rate of
Similarly, the model has also three compartments for the mosquito (mosquitoes)

indexed by m are given by:An(t), which represents the aquatic phase of the

mosquito (including egg, pupae and larvae) and the adult phase of the mosquito, with

S.(1) and I,,(t), susceptible and infectedespectively. Itis also assumethat
N, (t)=S,(9 +,(1). Then alsowe formulate theA,, S| ,, model to describe
the passagdérom the aquatic phase of the mosqui@g(t), to thethe adult phase of

susceptiblenosquito S, (t) and to thehe adult phase of infectedosquitol , (t) .

The eggs are obtained from either susceptible or infected mosquito at thejrate of
For whichaquatic phaseiill mature to adult at the rate @f,, susceptiblemosquito

will be infected with dengue virus after biting infected human at the raBg ,ofith
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the force of infection/, = B, Qh:\l—m, where, b,,is transmission probability from
h

human to mosquito.

It also assumed thateh vector has an equal probability to bite any hosltthere is

no resistant phase, due to its short lifetifi@rthermore aquatic phas&n(t) and

adult phase ofmosquitocan die naturally at the rate af and /7, respectively.

Table 3.1:  Definitions of parameters

PARAMETERS| DESCRIPTIONS

N, Total human population

B.B, & B, Average daily biting (per day)witiB, > B,

b, Transmission probability frormosquito to humafper bite)

b, transmission probability from human to mosqyjer bite)

m Average lifespan of humans (in days)

h, Mean viremic period (in days)

m, Average lifespan of adult mosquitoes (in days)

/ Number of eggs at each deposit per capita (per day)

m Natural mortality of larvae (per day)

d, Rate at which dengue fever infectediuiduals progress for
treatment

h, Maturation rate from larvae to adult (per day)

m Female mosquitoes per human

K Number of larvae per human

p Fraction of subpopulation recruited into thepulation.

q, Rate at which recovery individuals lose immunity

q, Positive change in behaviour of Careless individuals

a Per capita disease induced death rate for humans
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Considering the above considerations and assumptions, we then have the following
schematic model flow diagram for dengue fever disease with treatment, temporary

immunity, careful and carelebsimansusceptible:

(1-7)u,N,

Figure 3.1: Model flow diagram for dengue fever disease with treatment,
temporary immunity, careful and careless human susceptible

From the above flow diagram, the model is described by an initial value problem

with a system of eight differential equations givericdisws:

dt

as,

dt
GBS BR)oue (o

dT
h_hhlh (W +th

d—F*-dT {m 9R

Dhswp) B S @ RS

pmh%ﬁi%(wmﬁ%

(3.1)



t kN,
d a | 0
d_stnzhAAn -& ‘QmWh +|ﬁ7§n
¢ h -
di I
—m=Bh S -ml
dt B3 hm Nh m ’K{’ m

3.3  Model Analysis

The model system of equations (3.1) will be analysed qualitatively to get insight into
its dynamical features which will give a better understanding of DeBgidemics

in the society. Threshold which governs elimination or persistence of Dengue fever
will be determined and studied. We begin by finding the invariant region and show

that all solutions of system (3.1) are positive for all the time.

3.3.1 Positive Invariant Region of the Model
Since the model system (3.1) is Dengue fever disease model dealing with human
population, we assume that all state variables and parameters of the model are

positive for allt2 0. The model (3.1) will be analysed in suitable feasible region

where all state variables are positive. This region is containgd inf

Let (Sq S b TR AR ,rl)l' ¥ be any solution of the system (3.1) given by
S+ th+T,+R, N, A CkN, & S, +1 ¢ mN, with non negative initial
conditions, (Rodriguest al.,2013).

Thenthesolution%%(t), %(b LY, (Y, R(Y, ACF St j,()}ofthe

system (3.1) arpositivefor all the time.
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Proof:

To provePositive Invariant Region of the Modete shall use all the equation$

system (3.1)of human population whose total is denoted WY, population of
aquatic phase denoted By and population of mosquitavhose total is denoted by

N

m:*

First, with regards of the population of human whose total is denoti(d, e have
N, =S, +3§, +I,+T,+R, andthe system of differential equations is given
by

th:dS11+d$2 -Iﬁ QL glli
dt dt dt dt dt dt

Using system of equations (3.1), we get

dN, _ I

F—(l -,0) m, B nQWhSq w8 R L §9
P B RS, T
(BS, * BS)bw® { @ 0 ¥
hhlh'( m"'h‘)ﬂ-h
quh'( 4?7+1)R

This gives
dN,

dt 2 mN, T 'R( qS+r1,S nt +h).
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Then

dn, , ;

N, 1

at MmN, T 1 |
or %2 0

dt
Consequently

dN, 2 dt

Integrating both sides, gives
N, 2 c
Since
NS 4 4 TR
it follows that
N2 S 45 4 T R+«
Hence
S8+ T R M

Secondly, with regards of the population of aquatic phase denot&d ke have

DB B (2 ha o

dA, )
o {m #)A.

This is the first order inequality which can be solved using separation of variables

Then
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dA, , q
A {m #)dt

Integrating both sides one gets
InA,2 {m, #A)t+InC
This is equivalent to

A (t) 2 cglm +’L)t.

Ast- 0A,(0)2

Then

A,(1)2 A0 ™ ™)

As t- a,A (1)

Then
0¢ A, (1) kN,

Finally, with regards of the total population of mosquito, we have
N =S _+I_

and the system of differential equations, is given by

dN,, _ds, , di,
dt dt dt’

But from the system (3.1) we have

dj‘n AAn -@3 [Rm +r#7§n

and

OL—B3 th - ml.. Then

h
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or

It follows that

dN, ,
m N,
0 AN,

This is the first order inequality which can be solved using separation of variables.

Then

dN
__m2 dt.
N Th

m

Integrate botlsides gives
INN_.2 mt IkC

This isequivalent to

N, (t)2 Ce™
Ast- 0 N, (0)2 C
Then N, (t)2 N, (0)e™
Ast- = N (t)20
Then

OCN, ¢S +I_ MmN,
Therefore

0¢S, +I @mN,
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Hence the host populationsi&gg +§ +|, § R N. For Aguatic phase (that

includes the egg, lareand pupa stages), the total population siZg ¢ kN, as
t- o.
Finally, for vector the total population siz&, +1 ¢ mN, ast- =

Therefore the feasible set for the model system (3.1) is given by

ﬁ%%hﬁ%%ﬁw)?ﬁﬁ LT R A S A
T% S, *hL+T,+R, ¢N,, A, &N, S, +I, ®N,

Hence it is verified thaW is apositively invariant set with respect to (3.1).

3.32 Positivity of the solutions

Since model system (3.1s dealing with human populationt, is assumedhat all
state variables and parameters of the model are positive fot @l For the system

(3.1) to be epidemiologically meaningfue shall provehat all solutions with non

negative initial data will remain nemegativethat is S, (0), S, (0).1,(0).T,(0),
R,(0), A,(0), S,(0)& 1,(0)are nomnegative. We prove by the following

Lemma:

Lemma 3.1
Let {s,(0)2 0. §,(0)2 0 1,(0)20, T,(0)20 . R(0)>0, A,(0)?

S.(0)2 0 and1,(0)20} i q. Then the solution se{tSrh(t) 'S, (1, 1,(t), (1),



32

R.(1). A.(t), S,(1), I,(t)} of the model system (3.1) is positive, for ak 0.

(Rateraet al.,2012)

Proof:

To prove the Lemma, we shall use all the equations of the system (3.1).

From thel*equation of the system (3.1) we have

ds, _

WA m B S

or

Consequently

Shems, @A) M,

This is a first order inequality which can be solved using an integrating fa€tor

gt =g Multiply the inequality by the I.F on both sides, we get

d
e”“‘d—S:ﬁ+e“"ng31¢ e”(1 -9 /M.

This is equivalent to

dle"s ()¢ ») pNe d
Integrate both sides yields

e"g ()¢ ») N +C

This gives
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S, (9¢(1 o) N, +ce™!
Ast- 0, it follows thatS, (0) ¢ (1 ) N, +Cor

5,(0) {1-5) o .
Consequently
S.(ye@ o) WN(+(0p (1 7 )
Ast- o thenS ()¢ (1 o) N,. Therefore0¢s, (t) €1 p) N

Fromthe second equation of the system (3.1), we have

Do, B gls ooy o

d

gb ¢o N, ( Mnt)
Consequently

d

dS: +(m +9)S, ChM;

This is a first order inequality which can be solved using an integrating fa€tor
”ﬂ" 9)r¥ e(/m+ gt

Multiply the inequality by the I.F on both sidee get

Caa ddsh +d ™ Vms ¢ &0 7 D,y

This is equivalent to
d(é"ﬁ“ g)t $‘2 ( D) ¢p N g2t g

Integratingboth sides yields
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(m+ gt P N, & vy
e S ¢ +C
(l) m+ q

This gives

PNy | g lm o
S, (f) ¢ = +Ce .
m+ g

Ast- 0, it follows thatSnZ(O)d:L’Nh+C or
m+ q

0)- P oc
S, (0) e

Consequently

Sa(t)¢—fmﬁwg+%ﬁh(0) hﬁm 3 0

Raor

N

P N, GE{?Nh
Ast- = thenS (t)¢ ——". ThereforeO¢ S (t )
() m+ g () m+ g

From thethird equation of the system (3.1), we have

w=(BS mR)oue (b o

dl, ,
—t ajpl
This is the first order inequality which can be solved using separation of variable.

Then

Pe {m 4 apen

h

Integrating both sides gives
Int,2 {m +h Halt ;

which is equivalent to
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1, (t)2 Ce ™
As t- 0 it follows that1,(0)2 C
Consequentlyt, (t)2 I,0)e * " ¥
Ast- o, it follows thatl,(t)2 0

Thereforel ()20 "t 2

Similarly, it is shown that the remaining five equations of system (3.1) are all

positive.

Therefore it is true tha§, ()2 0,5, ()2 0, 1,(t)20, T,(t)2 0, R (t)2 0,

A.(t)20,S,(9)2 0and 1, (t)20, "t 2

3.4 Steady State Solutions
In this section the model system (3.1) is qualitativeeialysedoy determining the

model equilibria, carrying out thesorresponding stabilitiesnalysis and interpreting
the results. LetE:(S&, % 1.T,R,A,’S, L) be the equilibum point of the

system (3.1). Then, setting the right hand side of system (3.1) toorerebtains

(1'10) QNh _1*51 _h%,] 1-|Rq 2*-%‘70 (32)
P AN, - ;512 - h%? '2%(’ 0 (3.3)
(1is,+ 38,) { wnw hd O -
hlo-(m+gm, & (3.5)

aT - ( m+)R, & (3.6)
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ja g ) m AA, O @7
¢ KN, %

hAA\*n_(g +n()7Sm G (38)
138~ fl, O (3.9)

/, =B, QhN_m
h (3.10)

_ L

/2 - Bz QhN_
h (3.11)

— Ih

/3 _Bs pmN_
h (3.12)

We compute all state variables of dengue fever disease model in terms of the force of

infection/ "

From (3.2) we have

* :(1',0) M, +1B; "231
% i+ @ (313)

Thenwe substitute (3.6) into (3.13).

AN

from (3.6) R =( J
/‘)z+

where

T, A from (3.5) and
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|*:(/531+Z%)
" (m+ h )

o h .8+ 29)
(’7@"' @( hm"h)@lh m, a’)}

L a8 9 .
(1',0) th 1(”K+ @( hm"h)(?'h m, a&_ zsiz

from (3.4)

ThereforeR, =

Consequentlfy, =

(i + m
or
(T-0) N ( w)e m)(d dma)h, #,.8,d h4SS,

+(m +g( ), mr a)+S, g
(i @Cum ), m)(q wma)#

5 =
It follows that
(5+ @ v, @)@ ama)h, ;B
(1-p) M.( )G m)(qd wma)H, G,

Hm +g( wm4)@ g aphS,.

Then

(1-p) N, ( )l m)( 4 wma)h, i, 08,
+(m +g( wm+)d . mr A+S, q
((/1*+ ﬂ)( h/n"l)@h /ﬂ])( CK #77&)*‘71 h'h*l)l

S;l:

Substitute S, :*'OA from (3.3) to obtain
(1;+ m+4

(1-p) @ ( )G m)( g malh, L 4,) m. e Ng.

+(nﬂ +9)( hm+h)él n M a’)"’z N, P m
(+ me (5 /4)(m B Mo, o, 8p 4h ) g

3*1:
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Letf,=(1 0) M,( mt)g. M(d M) f,=m +q
=(m +9( )l . m ah+
=(m +Q( wm+) o m b f=q g h By

Then

s - f(/5+5,) 4
(/ +f)((z + M4 '1r47h571)‘

Then from (3.3)

(3.14)

%:pW“ (3.15)

(/;+1,)

From equation (3.4)

(s, + 18)

(m+ h &)

Iy =

we substitute (3.14and (3.15) to obtain

i) el n
)1+ ote )i 172+ 1)

(m+ h «)

o g8 o

I

It follows that

I*_/f(fl( b+ f,) .7 #3) ((+*1/ Y 1h'ﬂ*1)7’*§7 N
; ()1 + b - and)l o/ m)+n (3.19

Then substituting (36) into (3.5) yields

My

(m+ q)

It follows that

T =
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lefdn(y+u)#5;/@ ((F: 7 M@ L) hm,
' (m+ Q)5 /) oo @ H A e s @D

substitute 8.17) into (3.6) to obtain

aT,

(m+ g

Consequently

R =

*=/1* qh’(7f1( ;#fz) +f5*2 m'3) ((+*1
ST A )b B2 At ddin (), G19

Then from (3.8) and (3.9) we have

. hA
Sm(/;+ @ (3.19)
|* = /;% . . .
" m which is equivalent to
= (320)
m( 4+ oy '

Substitute (3L9) and (320) into (3.7) to obtain

A A, & nA, A,
/é- * + *
c th §/B+@ 3

A m) o-m AA, 0

-I% [eHe}]

or

& A SmhA+ i A O .
S ivEr

It follows that

A S (mbr 1) m) fma)

kN, J (e s )n
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Consequently

A,;:kwh(/(w+ SV A m) s m)

J ( m i /A)h (3.21)

Now we substitute (32 into (319) and (320) which gives

< LS ) A s m)

J(4+ i wm kL) h (3-2)
KN B( e YA o A m)
" N Y 2 (3.3)

Furthermorey substituting(3.16) and (3.2B8into (3.10) to (3.12) yields

C_BONL 4 (e B )0 Hm B %)

/) NG - Mo ) (3.24)
. _ szmhthg /1( (/m ’Aﬁ'/% A)/'( h, +A)mn( 47 -l#)
/2= o : (3.25)
N T N SV
/;:/1*83 Qn(fl( S 1) +f5*2/#3) ((+*1 ! ¥im 1h-h271)5’2/7 th(3.26)

Nh(/;+ fz)(( 1 +h/)r7f4 - ghd’l)b {  tra)+h
We substitute (3.2) and (3.3) into (3.2) to get
I;(A2+B/C) @
It follows that
/;=00r (A2+B] «C) @
where

A= § fZNh(a ] #)7 m(n B/ mmk@'nrh( |2 1)(0’/(
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-(n +m) ) BN, ba Mmoo )
) Jte B Wl - d(h g C Ay A)

B= 7 LN, gfa +1 Hm, m+BAN o LM mfnad A +)n
K BTN, G et ) A m fh ) med{a j,+ )
M ff kB o, - 0w (7 g CAhY Q) WEr g .
(ra+ m) o Bi(fF +) by W8, (BU G B B L
d b (0.t B )

C=7°LLN, gla o wym, m BE( 1L £ 4 b0 o )

ko BAEN, B ma A+ )
Hence the disease free equilibrium is obtained wher 0 and endemic when
ANZ+B] € & (3.27)
For disease free equilibriurh, =0
It follows that from (3.3) |, =0. Then from (3.2) and (3.3) we obtain
/, =0and/, =0.
Thus from (3.14) to (3.8) and then (3.2) to (3.23) we have

(1'p)Nh( 477+z§7 4 Ny

*_ * — quh *_ *_ *_
Sﬁ_ m+ g Sﬂz_(nz_i_ g)’lh_O’Th_o1R1—O'
. _kN.g o~ _kN. .

=—, =—— andl,_ =0
A NyJj S Jm

Whereq=(h,/ { A7 )1 )4
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Therefore the Disease Free Equilibrium (DFE) denoteffxyf the system (3.1) is

given by B, = (S, (1), 5, (9 0.0, () .S X ) ¢

é‘(l'p)Nh( 477+237 t N.op N, OOOthq kN, g 0
mr g U S (3.28)

&
¢

35  The effective Reproduction Number R,
The dynamics of dengue fever disease is determined by the basic reproduction
numberR, which is a key concept and is defined as the average number of secondary

infection arising from a single infected indiwvdl introduced into the susceptible
class during its entire infectious period in a totally susceptible populatitout
intervention while effective reproduction numbét, is defined as the average
number of secondary infection arising from a single infected individual introduced
into the susceptible class during its entire infectious period in a totally susceptible
populationwith (Treatment) interventiofDriessche and Watmgh, 2002,Lashari

et al, 2013), for if R,<1 the result is disease freguilibrium and if R,>1 it means

that there exists endemic equilibrium point. The model system of equations (3.1) will
be analysed qualitagly to get a better understanding of the effects of treated

individual, areful and Careless human Susceptibf3engue fever disease.

The effective reproduction number of the model (3.R)is calculated by using the

next generation matrix of an ODE (Driessched Watmough, 2002). Using the
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approach bDriessche and Watmough (2008, is obtaining by taking the largest

)28 g
(dominant) Eigen value (spectral radlus)e&g:(—EM Ie_HV (EO)U
e WX, pg WX,

where, F, is the rate of appearance of new infection in compartm'ent\/fis the
transfer of individuals out of the compartmeanby all other means ané&, is the

disease free equilibrium.

(
5 (
a1 F HE (
gqﬁ(Eo) nH(FO) g
This implies that
a
& (a%+N% 5)
_a
F_ae 5. h
%bth— 0
¢ h
(1 ,0) ( 4?7+2§7 4 Ny _p N, kN, q
Wlthsl mt g ,sz—anrgandSm—m Then
&0 geBl( p)( m+.4 59,8 P §
= G m+ g W, G-
bhmkq 0
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The transfer of individuals out of the compartmeng given by

_&, sqm+ f A,

V, é
&, Geml .,

Using the linearization method, the associatedrix at DFE is given by,

aH 'y H (
= (5) —4(R) |
V= ; y o :
_H .
=) E) (R
This givesV = Se'w ha O
¢ O &
a 1 0
- %m+ h A
with v' = 2R+ A
& 1
e O —
C I,
Therefore
& &B(1-p)(m+y va Bpmo & 1
0 + &
Fvll_g (}# nﬂ"‘g hml-2q§mh M-l-/f?-a
_3%331;h kq & 0 1
% - m 0 —_
¢/ m § m,
The eigenvalues of the equation29. are obtained by solving
‘ge 0-/ éBlbmh(l' lé( hm*'z)q+2 Gin PBE h@gp
.. +g) 4 %
det(FV' i 12 =def? ¢ (m X
<) kQ%bhm 0_ / O
g wl m e 0
This gives
/2:"oi kaBb,, ..Bf%mh(l' /)( hm*'z)q"'z G PBE o

g m ) §F (.m) g m

consequently

(3.29
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It follows that theeffective Reproductive number wHicis given by the largest

Eigervalue for model system (3.1) denoted Rys given

R = é kaB,b,, QBgzmh(l- /)( h’TH-Z)q-'-Z G PBE o nl
o m o he) §F (nm) g m

Butg= {(m #) 4 /).

Then
&:J-k%bhm (Yo o )8R (o Jm, 4B, 4
J ,rzp( H™ hha)( h ’75) q
- 'kBs.bhm th
R\l 550
Where

t=((m +0) o -ABQ Y g I a+BaH
Model System (3.1) has infectidree equilibriumE, if R, <1, otherwise endemic

equilibrium exists.

3.6  Local Stability of Disease Free Equilibrium Point

The disease free of the nonlinear model system (3.1) is given by
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E=(S(9.5,()9.0,00() .S()x ) ¢

a(1- p)N + 1

AL P)Ny(+ % Bhop Ny o KNG KNG o g
¢ m+ g U AN

Theorem 3.1:

The disease free equilibrium of the Dengue fever disease of model system (3.1) is

locally asymptotically stable iR, <1 and is unstable iR, >1, that isDengue fever
disease can die out from the communityRif <1, and can persist in the community
if R,>1. Local stability of DFE point is determined by the variational maigix of
the nonlinear system (3.1) corresponding=oas follows,

Let

Chsw ) Blna'ﬁ;sﬁ] W R .59 5 S T RALS)

Spmnn s o k5 5T RAS)

GBS BR)oue (03 oS $ AT RAS)

%:hhlh (/W a4 Q4:(Sla1’ Sa bl RGA LS "y

d
d_Ff\:thh {m R s 84T R AR (330

%:/-gai& b) (@ AA QS S LT RAS)
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dcim A ?@s?m— + % #Hs 5 HTRAS)
dl

=B, hs e &S § hTRA S )

It follows that,

G (%) 5 (8) —h(e) e) <20 (B~ (=)
s (B) o (8) —b(E) fE) —2(B) (B 28 (s,
So(E) o(e) e —He) e 28 Ad SE)
82 e e e R S U e
Cgae) e N e o 38 A s,
Cor(5) —a(e) ~H(E) ~Jfe) 20k (H el s
do(m) o) <pe) W) 2B b e e
$2(e) 2e) He) Ho) 20 Ak Ugf s

zaaeng q 0 0 q 0 0 A

&0 q, -m 0 0 0 0 0 %”‘

e et m

Zo 0 ad, 4 0 0 0 0 B

&0 0 h, g-.m O 0 0 0 (3.32)
J%:io 0 0 da -g-.m 0 0 0

x®

®0 0 0 0 o -h-px ;9 L

@ m, R f

x

*0 0o  -XdBby, 0 h, -m 0

& / m

%o o KB 0 0 0 0 -m,

¢ J m

BOm( g- (1 +)py)
_ h h

Where, A= = ,

ot m

szmh(/Bz hmBl(zq(l' )_I—t[))
Q.+ q
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Thus the stability of the disease free equilibrium point is clarified by studying the

behaviour ofJ in which for local stability of DFE we seek for its all eigenvalues to

have negative real parts. It follows that, tlearacteristic function of the matrix

(332 with / being the eigenvalues of the Jacobian malkix, by using

Mathematica software the Jacobian matrix has the following values:

The other eigenvalues are given as

L;/—) “when+/s is not a real number
6

_1a 1
/3_5? 'lﬁ+ W \//—y—g_l_ h'd_m

‘when+/S is not a real number

_1a 1 )
/6_ 2? -lﬁ h””'m \//_’_9+ h/d_m‘;//_)g

/,= i(q wi( 1 tm W}ni/_ywhen\/; is not a real number and

finally

/g =- i(q wm(h m ") \/_} When\/a_ is not a real number

Whete, s =4k @B B 4 0, HWKaBB .. &( (¢ g )+)
(g +w¥a +h i m) m
a=qt Ra(n wp o 6a- L AL (20 ) wd po-) Ao+
Therefore the system is stable since all the eight eigenvalues are negative. This

implies that atR, <1 the Diseasdree Equilibrium point is locally asymptotically

stable.
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3.7 Global Stability of Disease Free Equilibrium Point
In this section, we adopt the idea of Ozair al, (2013), to analyse the global

behaviour of the equilibria for system (3.1)heT following theorem provides the
global property of the disease free equilibridmy of the system. The results are

obtained by means of Lyapunov function.

Theorem3.2 If R, ¢1, then the infectioffree equilibrium is globally

asymptotically stable in the interior @
Proof:
To determine the global stability of the dise&®e equilibrium point, we construct

the following Lyapunov function:

L(t)=-kB,b, M ,(t) +A ym+ rma¥ , mr g vy (333
Calculating the time derivative dfalong (333), we obtain

L (t)=-kByf, tl(t) +A ym w ey . mp @ (ty
Then we substituté, (t) & | (t) from system (3.1) to obtain

|
N, 2

L'(t)=-kBsbhmtg£Blal BS) B (o134 o

o

. a I
/ ( ,}p-l- tha)( h mt) qm(g:@7 thhbSm _ml m
h

Consequently

o & -kBb,.t(BS +BS) 4
L(t)=/ (v 18)( o ms) G, nmn%h/( a e L) g

1-
I8

(m+ )8 gk, 70 m) @y,
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2 _ _kijhm th
But =— )
R J o y® ,)g .(m +m ay Then
W=7 (e ) o) gy gt B8N

G

kBZH2, f,t a
I é;‘tlh
J a wm .)g RuE

implying that

L@®)=/ (ar 8)( ) g (TR, YHTR, Y

3 |
¥ (m vy m# S,
h

_ kB32[)hzm ‘th é tl
T am ) R

Therefore

L®)=-/ (m+ra3)( wms) G, sm{dR. 1)(z JTR)

. I
h Ty ( IlTI _Eb mﬁlsm
h

KEEL Lt A
T am ) R

. I
h y ( W _Eé mﬁlsm
h

Where f = (3131; B %)

Thus,L' (t)is negative ifR, ¢1 and L'=0if and only if |, =1 =0 is reduced to the
DFE. Consequently, the largesimpact invariant set |{'(Sq S, e T R AL

S

- Im) I w, L'=0}when R ¢ 1 is the singleton{ E . Hence, by Las
invariance principle it implies thag,' is globally asymptotically stable itV

(LaSalle,1976). This completes the proof.
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3.8 Existence, Local and Global Asymptotic Stability of Endemic
Equilibrium

Since we are dealing with presence of dengue fever disease in popdation,we

can reduce system (3.tb a4-dimensional system BliminatingT,, R, A, and S,

respectively, in the feasible region.The values ofS, can be determined by setting

S, = mN jtoobtain

RN W T B

Sz, B“a'ﬁ% S 5

GBS BR)oue (o
(3:34)

_:Bsbhm%( m'IN Tm)l_ -

h

Then weset

ds, _d} d, di,
dt dt dt dt

Then the model of system &3l) has a unique endemic equilibrium given by

E =(S;l S, 4 ,*Im) in q , with

(1-p) P, B A4S, T R . §g0

p N, B, nmL]—“;% S L0 (3.3)



52

(BS, + a%)bmh,'\,—:: {m + ¥\ 0

BE;bhmll\l_h( mN I*m)* Iy*m &l
h

3.81 Existence of Endemic Equilibrium Point
Existence of endemic equilibrium depends on the quadratic equatdd, (Bat is, if
it has positive roots. The sign of the roots depends on the sign Bfand C

From (327) we have /> +B | +C @ where

A= 7 LN (a & # @ /, KB (G0 . 5)(d b
(ha+ m) m KB,N, ba + hd)(m. { & o))

U fu kB ot - 0 )l G (an 3 1)

B= 7 LAN, gla 1ty m+BAN, . 5 B m 1T ) +)
KB AN, f R+ ) B my [k ) mEwa
M+ R) AT @B (1D - )0 A d-ad B )
kBB (7 A ah+) m) (BT, ) o m KB,
(Bt ) b+ (T = ) Q) (40 1)

C=7’LELN, gla w1 @m, m BE( 1L )+, L0 .
(ha ) AP W BAN, o m w(Gh ¥

Now expressing\, B and Cin terms ofR, gives

A= i EN(a f @ sy kB (G0 5 )(d AT A) KB,
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(a+h, +m( juta b ) M M i k@G k) 2 Gag- ) H)
AO=r FLN(a B #p L 6 WmKBE L (Ta0 )
kB,N.O(a+ o+ Ju( & 8B ,(fp 5, )d) then
A=j N (a +h ) KB 0, @ KBN (2 4+ )akB e,
-KB,Nby(a +h +jukB af -EN(a .+ 4)+/HB qu |
- EN(a +h i Lofj, kBN (B b ) fom,
It is follows that

A=t {KBNbw(a % #HukB af+ kBN .(ba .+ R)a nf, f)
'(a #, W?szh rmfj( o of7KBY th) b

Then

%} bukBNA(KE fa+ Jy m) m
& LN A S mARB Al s

A=t+(ath, +mt N & 8 0)

or

A:t1+t2% bkNyA(B, fy T BB

& /LN, m j,myB, a)p ) l@ implying that

A:t1+t2%thf(Bz/4 /|Z7n(7‘7‘ sza mhq)(/n +/z a')( |{77 2")ClmFg7_ 18

(; fZNh f4 (j 4?7 nm kB. mfA) B\%bh’nt =

consequently
A=t +t, (LR 4)

therefore
A=t +t, (VLR 4)(J&R )

in case of B we have
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B= 7 5N, pla +1 gy, m+BAN, . L 4 mofr.7 f) £)h k Brd

thmh ﬂ(a’f hh+ h),n?‘n(mAj(-hA "# n)m fz'mr(aj h+ a _'z_r@ f4/72 nf

KB (- @) wi{ha ) i kB (4 K </ D+.)f B(AT,

)0 @ 4B, M(B(E F) Wb NPT - Bla A S R) B)

or

B=ko /B LN, f » rum tN(a + H LB ., B B 4A98.
(f.f,+ 1) b @7 KB, 4OKB, @B, (th ) KB QkB .9 & .fr
-/ 21, f,N, /;((a + .1 +h)mfn m-B, TN, ., h@ m+ h)ﬁnﬁq
-J N (a +h wp 2of gy om AN+ ) AAKBm,R

'kabmhqk% th M h Qllfl.

It follows that

B=t, 4 (W BEN & R i JFp+m tN(a , +.) fBp b,
+kBb,.akB £a M . Q’lfh)q2/ﬁf2 f4N"h(a + +h) 7., or

B=t, 4 kb,Na(/Bf g+ 4 ,) A+ mi(d & 2B

+quszbmh phd. (7 h)?' 272 fz fAINh( at, +h)h ?n h
then

B=t4 -*5 a.z":Zfé‘ll\lh(a /l?'- f/ﬁ?nnﬂ?’

A kbwN.a( /B T @+ /%) it mi(g & B BOKB w00 )P0

- 7N (av 4t o m

or

B:t4 *5 $2f2f4Nh(a /ﬁ" r()qfnnf
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Nl Bt pfar ft Jrmbe A SELRAB: o A Wl Aehm,
® 2 £,ENm, 8 9
consequently

B=t4 "ts t'é'(t7|¥ 1)'

Therdore B=t, 4 t(t,R+1)(t,R, 1)

For the case of C is

C=72LEN, gla +1 #m, mBE( 1L B4, Hu(b 4
~(ha +m) P e BAN, w Hm (G ¥ )

then

C= /2f2f4Nh ’»I(a +1 ﬁ')m?n mﬁ@( ft fz) Him mlpfrqbk Bt Np 2h zrg

or

C=k BB,( f,f, +f 2o K N L 2 r/:fzf4Nh ik f.Bb
K BBy(f,f, +) &, &K ook EBEN, i, q (m+,) R

It follows that

o 2
ki iy el o BLE6* 1) G
C Kbwf 17, T,mN, 8 * O

C=kb,j Af ’r?Ntsé ./Bl(flf2+f3) /iq(ﬂ’ﬁ 9)( hnﬂ-hha-)Rz 4.
" L E‘,% KB famN Lt ° 9

consequently

C=t( 4R 3 o C=t(1 4,R)

Hence C:tg(l %Fﬁ.)(l \ERE)

where

t=/ fZNh(a+ R +r/)7 KB O, g RBAN, nh( a 4 r)'q/Bl oW hhos
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t,

(a+h, +m LN, 8 . /.m%B Q)

a(By , m BB, a)(m #, &(m & .
fZ(/ mnkalbmhq) 83th

ty

t,= ko BN, f 2 num+i,N(a + O kB 1, &
ty=+kBb,a /B( £ f, +f,) H . #kB okB aB . ( +f B _.akBo.a N&,f.
t6:2/.21:21:4Nh(a+ /P? + I"()7 21/73

_VBfoalar prmm (e 4 A) LBl ABAKS . kmir )
T % f,fumy 1Byt

—é' fZB3bhmt — ; i
ts_ Bz T A2 B ’ tg_kbm 4 ht8 r Y4 Al m
@omar e J Bt NS a=(h {0 )
. I B(hh+ k) ma(m+ g)( wh, «) &z\/ KBy faut
® KDy fomN, it ’ (m+h &) ¥ .ms)aq

fi=(1 o) M.( wnt)g, M(q ma) f,=(m +q)
fs=a @oh Myfs=(m +q( .m0 . m ap+, Ny,
fo=(m +@( ym4)t, mr a

It is observedhatthe coefficients A, Bare non negativeif R,>1 and C is positive

_ o/ 2
if R, <1, Cis negative iR, >1 so that/, = B ZBA 4AC from (3.27).

Therefore the model has :
i) Unique endemic equilibrium iR, =1 implying thatC =0
ii) Unique endemic equilibrium iB >0 andC =0 or B*- 4AC

iif) Two endemic equilibria ifR, >1 andC < 0implying that4AC < 0
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Iv) No endemic otherwise

It is clear from (i) and (ii) that the model has a unique endemic equilibrium. Further,
in (iil) indicates that the model has two endemic equilibria.

This is illustrated by simulatinthe model equation (3.1) with parameter values in
Table. 3.4.

Figure3.2. Shows a forward bifurcation

Stable
EE

Stable
5k DFE

Unstable

DEE Stable -

Force of infection, | 3*

0 1 2 3 4 5 6 7 8 9 10
Effective Reproduction number, Re

Figure 3.2: Forward bifurcation

From figure 3.2showsthe two equilibrium points exchange stabilities depending on

the value ofR, . A trangritical/forwardbifurcation in the equilibrium points occut a
R, =1. IfR <1, disease free equilibrium point exist i.eo endemic equilibrium
exists. But if R, >1, the endemic equilibrium exists. Thus thesea forward

bifurcation because in the neighborhood of the bifurcation point,fahee of

infectionis an increasing function oR, as showrin figure 3.2.
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3.8.2 The Endemic Equilibrium and its Stability
Here, we study thstability of the endemic equilibrium points.Rf >1, then the

hostvector model systeif8.5) has a unique endemic equilibrium given by

E =(s,.5 1.1, in Wwith

S,=(m+BNb. &4 fB(2.d2 ) 9 B . (1g+) J)p
Ny ((a+ # + HB(2 . g+) 7B&( . q)) 7 mA2B+ B
Bl A 0 o)R) + (2 2.(6BB, (amx M . m.) g,

%(k?f“:f;t@m B (N, @ 48) 8(B (mmi BN . .

+(a -hh W) r|4)7 B:’((a h'h h)(Fré 4) -rl;1/77rn'l'/77§- hm( N 4?( 2

(1) @ 6.9 h+)3?3))2%:;/(2m (Bf B) BN, 1 & n(b2+m))a

. _4& i (e he)( ) B
S’b_é%n-l-le\ﬁbhm Qi W/MBpP |, "'/""7 ( kbmzt( ) '\E mn OB

mpi

a a kB,b,., 4t 0
, (1 +g W My + oy h ian ; Om
(@2 +4 ééa )EEBQ Y e iR S

Lol £ OB g ge JRE+ (08 2ene (whe

aD: Ot

(‘72"' n%(k;fhmy%t% m B hm(JNh h+”ZFg)63'( B h( mi

BN, g(a + /1 w)m ) me{(a o+ p)esm gt mi B N W0,

(1) 8) 0. 9 0R)) Bz (B B)BN, o & 1(6:rm)
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. mk
: kb, ,,tm+ /ﬂi( hm"hh®( h ’75_') 52

l;:g@#"ﬂ’”’* Pl ® e of moma( B ) e
a N joi( e pe)( ,me) &
Ny, bmh§( 237 m%(Bz i 3.( 2d h))77 fn — K _tb

. a 25. a kB,b.., &t
Ba( ¢+ WJR) +é§\ﬁ mhégla% N h)am

+m B, (N g 8) (B (7mi BN ., o (ar, )3

Bl((a+hh +m( .g +®)m, mMmi B hm(un h( . 4 ) h_)

al g Im))) 8D (28, ftar o ) arefl TR, H(ITR, )

i m (o) ) (@ym, 9?;),

Wherel =
mko, .t

2 'k% th
o L) (nz +y ay

3.8.3 Local Stability of the Endemic Equilibrium
In order to analyse the stability of the endemic equilibrium, the additive compound

matrices approach is used, using the idebeaf and Lashar{,2014).Local stability

of the endemic equilibrium point is determined by the variational mat(rii) of

the nonlinear system @) corresponding ta” as follows:



60

Bhzp) o, Blna— % 7 .8q S 5 )

Do MBS, - W 2920 S 5 4 )

Se=(S 8 %)buz b B 34 =6(S 5 4
o= gy, W?(th Wm. (56 5 (339

It follows that

4O.(e) Bie) ¥e) Se)

Io(e) L(e) Be) He)

EE S L
%—2;@) o) He) He)
2o(E) ale) e) o)

Hence the variational matrix of the ndimear model system (36) is obtained as

& Bbyl, Bb,S, O
iy q el
e . . P
0 g, - g 2oml 0 BuSy g
J(E )'ae N Ny &.37)
_w * * .
& Bb,l, B, &l » b.n(BS, +BS;,) 6
e TN — -a A, 5
e Ny N, N, 5
® b I’ © B
® 0 0 mB,b,, - % m %Nlﬁnlh 5
g h h -

The following lemma was stated and yed by McCluskey and Driessc(i004), to

demonstrate the local stability of endemic equilibrium pBint
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Lemma 3.2:

Let J(E*) be a43 4 real matrix. Iftr (J(E*)),det(J(E )) and deftJ? (E*))are

all negative, then all eigenvalues dfE" ) have negative real parts.
Using the above Lemma, we will study the stability of the endemic equilibrium.
Theorem 3.3:1f R, >1,the endemic equilibriunE’ of the model (B4) is locally

asymptotically stable iw

Proof:

From the Jacobian matr'd((E*) in (3.37), we have

() m B g bl o,

and

. 1 & kB#b,, 4t . S
ae3(E)) = e e (N B GLL)(N, 7 B B

(No(@+ @) B 40) B b B ) (BN(, &S
+B(N(2 +0S B .H.(S 9) °
Thusdet(J(E*))<0if R >1

- kB.ibhm th
J (o R

where(rm + f a)

Hence trace and determinant of the Jacobian ma(rlE(* ) are all negative.

The second additive compound matrices are obtained from the following lemma.



62

Lemma 3.3:

To establish the second additive compound m*tﬂ?l(E)) of the Jacobian matrix
J(E" , the following will be considered.

From the Jacobian matr3>( E*), the second additive compound mat(rj)?] (E)) is

obtained by taking the coefficient of from:

adetN[ 1, 2 | dBN 2] dENL, 2| 1 de¥] [d 2] 2, 48 [ 1
TetN[ 1, 3 | el 2] deNL, 3| 1 de¥] [d 3| 2, 4 [ 1
®etN[ 1, 4 |dely 2] dENL, 4| 10681, 4 | [B&N34 | 1, BeN, 4 |[2
etN[ 2, 3| deN 2] deNe , 3| 1 de¥ ] [ 88 3| 2, 4 [ 2
ReN[ 2, 4 |delN 2] deNe , 4] 1 des ] [ 88 4| 2, 4 [ 2
g%etN[3,,42|ﬁatN [ 3, detN1, 3] deN [ 3, 4 |d&, 4]  d@3, 4|

, WhereN; = gJ(E*)+ IX andl is identity matrix.It follows that

N:gJ(E*)+ IX &

em-Bwla 0 BoS, o
¢ N N
g 0 BmehI :n 0 szth:} S
7 -q, - —_— N
¢ N, N, ;
e *

é BlbmhI m BZ Q'Ill m -a +$h 'lm bmh(Blsq + BZSQ) lz]
S N, N, " N, u
€ u
é * * u
& 0 0 mBp, - Bomln B &ly
é N, N, a
& 0 0 0

0 X 00

€0 0 X 0

§0 0 0 X

This is equivalent to
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e Blb hl Blbmhsa
& m m X q 0 _—17mh™h
é Ny, \R
e * *
g 0 g, - 2oomle 0 BebuSy
N= & N, N,
=é . . .
é Blbmhl m BZ Qﬂl m -a 4 - m X bmh(Blsri + BZ%) .
g N, N, h N, u
g 0 0 mB, b, - Bl m B &l X+
é N, N,
bl
- nz - Bl I\rlnh m +X g
ThendetN[ 1| B2 " )
BmehI m
0 g, - g 2wy

h

4 1 64 )
OrdetN[ 1, 24@@-% X § £ ﬁmi-@1 X +0 then yield
c No e g Ny *
deN[ 1, A4y onln x°Fg  mBAle
c No = N -

Consequently

detN[ 1 129 2omln
¢

a h.1" & & .
detN[ 1, 24adm-24mr o HmBle&dm
h + € hoo+

Lol

Buunl o B, 4’
Therefore detN[ 1, A4-1y- 5% g- .m zlleh mthen
h h
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_ _ Bl(l' uz)bmhlm % 0
detN[ 1, 24/1%" 3 N, or

0

detN[ 1,235 m 201 I*\luz)bmh'm % § 0
¢ ' E

ThereforedetN] 1, 240
Other determinants will be calculated in the same way to obtain the following matrix

BbuS, B &S,

e
e 0 0 —_ 0
é ' N, N,
é .
© B,b,,| Bb,,S
e —2%mh' m mh~h
A a, & q 0
g Nh 2 3 2 Nh
4 b1
’ € 0  mBbh,- % 3 0 g 0
J2, =é :
)¢ gy 1" . 0 . . B, 6S, U
e u
e: N, 44 45 No o
é u
é 0 0 0 mBb,,, ByOinl s 0 u
¢ N, ¥
e * u
é 0 O Blbmhlm 0 BZ QﬂIm aee g
g N, N, u
b1 B .
Where all —-_ ”ﬂ Bl I\rlnh m _ g_ hm 2 le‘lll m
h h
b, b BS, +
a22=-—81,\f|““'“-a 1, 2 o, = “(Bllfl o)
h h
Bl B &l
Ay = 1N N, i N,
B,b. 1" b.(BS, +B, S,
= 4 M zN—h a - 1- . 5= ( N )
h h
N N _ bl
a.=-0q,- mBthm_n{nB3ﬂnh’366_.ah " n{.nm
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Therefore, it gives

de(I(E) 3 <5 Bt (MM, E)(R(mN, 1) F (Nfa e )m
Blbmhl:n)(BZ th*mv"'(Nh(a + rﬁ +hmﬂ mBs"'hmrrﬂ( Nr( h @7

Bl 8 AlL)(NW( .02 )r(B; B} . [f)(BS, BS)
(BB (N 7 78 AS, (V RoB(V R & #BY
BNGS))) (Mg +m+dm Bl B G Nia
m+ M(WR 4(VyR §( BBBN L. & ™N 4) S

(Nh(a+hh tg 2 h’)” @'mh'ﬁm)(( Nh(a h TA h)’ B mﬁ"rm)&:

~~

(BB, (N 1) S, +R(miy-t) ) <t where

f(R* h® jnln ™) g BlSy f
kt (No(m+ @) B, f7)S,Bkt . f

F=B(N,(a#, +ww # B.+.H)S, B +I16,
B, (N,(a+/, +g7 w47 B b, B +,.04)S,)
(BN (242 @S, BN( .02.)8 Br Y § S.))
G=BBO,, &(mN -[) (M .02 )8 By . ¥
(B (N, (a+/, +g 2 7 By B)S, BM, .S.g
1=(N(% e (B B) 4,)(8S, BS)

V=(N(2 2@ (B B) LL)(B(N(.m)n
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Byt ln ) +Bi(N, ¢ 48, .41,))S,
Q=(N.(m +m) B I, B b)(N(, 21 (B+B) #l)

ﬂ; Re _ kB3,[7hm th
N, (a+h, +m +gkt /ol wm L)q W(m +moay

y=

Thus, from the lemma.2, the endemic equilibriurrE* of the modekystem (3.34)s

locally asymptotically stable M.

3.8.4 Global Stability of Endemic Equilibrium Point (EEP)

Theorem 3.4

If R,> the endemic equilibriunE’ of the model system (3.1) is globally

asymptotically stable

Proof: To establish the global stability of endemic equilibrquﬁ we construct the

following Positive Lyapunov functioi as follows:
V(.. LT RASRT) Es o B (45 B )S( .+
(T.-TinT) {R RN R) (4 An A (s & F( 4*h )338

Direct calculation of the derivative &f along the solutions of (3.38jjves,

a g @ a al,
FEs LTRSS @ gl 7%?1 g
5 T AT AR AP . A dA O 'S &dS
s I SR GRS

Consequently



67

dv aswl sn Qjﬁ % r§ |h-|; @, TaT, dTo
dt | Jat gj d

aRh R @R A - A d/@ $45 dg Q - d
c R st CA a " S¢ dt |, ¢ dt
Substitutings, =S, -$.S.=S, -$ . =1, 4, T =T, T,

R=R -R,A=A -A ,S,=S, -Sandl_=I_ 4 into (3.1) gives

d—%=(1p)qwh e 9 (8 B9 s
By, =, Lz”ﬂ?ﬂ@ $)

g h
di,

%fafs -3) oz B)el" (m a4 )

ﬂ: h(lh 'l;) ("27 Ha’(Th Th)

It follows that

%%—f H, f fF f+f, ., f (339
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Where,
:éshl- % ﬁ1 ] (Im Im) + | B T2 % * ES'A'Q
fi ﬁgp)mh?n@ N, ’Eésm S[') ( R) ( g@
_35,-5 P a (Im- Im) + m+ 5 1| (3.41)
fz_éﬁ? ?D ﬁNh ?2 n@ Nﬂ h 13 é@lﬂ Sﬂ) i

¢ R+ (344)

an- A BA (A-A) DL A) .
fe‘g: i Ir_/ég o @sn §) (% ) (m A(n, J? (3.45)
_&s,- 8 B - U :s s) | (3.46)
bt ArgrA(Aﬂ A) ?qm < w@ n),;
=g B s ) . Gan
¢ 'm F b |

a

EMLE PP W S TR ]
¢ S - ¢ " f

or
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f,=mN e i Q-phm 1 of"\ m *
1 h? S, 8 h % Et{_j N N
(aR.- ﬁ)gﬁ % g(“% : 9) 1%% . Hence
o S Bl (S S) S
f,=mN, pmh% N 5 Y 1F§67§
S . Bowl(S-S) ($-%)
nzNhSn] P o, N, S h 77 $
aS -g
%S, g%%

Then for the equation (&1) we have

£s 3 . @ )
fzzi%gw Iani 8aB bmhlm BZ le m h_|_/7Z SE) ‘
¢ 7

S, 2¢ N, N, -
This yields
f-pthﬁWA%é%) mw%-
B (S 8) (8 -8) §%'r§

Ny S !

2%q2§%

Ra ﬂ%

!
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For the equation (382) we have

) =

» o -
- ga(s 5) o A)oalele) (g ps )
or .
f;ae,—' E(Bl% 55) bes 83 ”“”‘h“"“) (m n W)
Then

al,- 1, \ B A (9

S st CSLONCLIEEE S lUR RN
or

L es as)le e des ey o B g

© 0 im0, 1)

or

_alh_l;: ﬁbéd mBlS)l bnl\ a%

mB% 5% +—ﬁ§§ (m A+ K+ )

e ﬁ_ﬁm

mlbm

et ol

13@—"'— B
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Therefore

bhlm m I*h *m I*h m R* Im m
f‘—&h s, +hoasy ohres glves qefoas

mBZS12 h+ %Lm%% h| mhm§§ mmﬁ’# mlmen:

bmhI:n ‘QHl *m Lh @n m I;h M? m mlpm
N, TN 'ﬁlh N, 2R B'S B

«\2
b1 I I, -
ngS, 1t Am A aaf(“l )

h h h

Equation (343) becomes

aT hT {87h h 'W Fa’(Th T*h)'} or

f4 :(hhlh '/Izlh)ZT hT O r(77 '|)<7|_ }I%hi Then
s T8 T-T)

f4:(/7h|h /glh)gé Tr—“ 8(-,(77 . h_l_h Hence
c h =+ h

T o)
f,=ml, +Hl h-lr-_h -f1 VLE ( h mr)g"g—)

h

For the equation (84) we have
P,rdR-R 6 . R-R O R

f | h% QTh (' n/7 1')‘3Rh R1 oS

L0 S UE =

Consequently

R T R R
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Thenequation (345) becomes

A B M 9§ 0t
-(m, +/Z)(An %)} or

f, = %sm JS, ’(A;,\'l A) s A o S

1-0:0: Ot

; e s
S /(Aan A, 4(?M&),*m%(_m oo
¢ " *

Consequently

For equation (36) we have

Then

For equation (37) we have

or





















































































































































































































































































































