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ABSTRACT

In order to describe and evaluate the past and current status, and predict the future status of mangrove
ecosystem in relation to changing human activities in the coastal areas and its environment in Tanzania,
mangrove sediments from the Mtoni estuary were analysed for elemental (C, N) and isotopic (6"3C, §"°N)
signatures to establish the role of anthropogenic influence on the contribution of organic carbon and
nitrogen in the tropical mangrove sediments. Moreover, metals, PCDD/Fs and dioxin-like PCBs were
analysed to describe their current sources and fates in response to anthropogenic and natural changes.
Lastly, the study intended to determine and compare the variability in the distribution of potential
micro-pollutants in the mangrove sediments of Tanzanian coast.

Sandy particles dominated the mangrove sediments, with less than 6% of organic matter (OM) in the
estuary and less than 9% in the tributaries. Similarities in the levels of total organic carbon (TOC) and
total nitrogen (TN) with depth were observed at all stations, indicating a homogenous, well-mixed top 9-
cm sediment layer. A clear gradient of TOC and total nitrogen (TN) levels from the riverine (Kizinga and
Mzinga) stations to the estuarine mouth was observed with highest content in most upstream stations
and decreasing towards the mouth of the estuary. No clear seasonal trend of C/N ratio was observed
except in the confluence region where the ratios were higher in wet than dry season. Wet season §"°N
values were lower while §°C values were higher compared to dry season values for all the stations.
Mzinga 6™N values were higher than Kizinga values in both seasons while the opposite was observed for
81C, but all were lower than the confluence values. Correlations of the geochemical parameters for both
wet and dry seasons suggest that OM in Mtoni sediments originated mainly from sources that are N
enriched and °C depleted and are linked to OM degradation processes. Combined elemental and
isotopic signatures indicated that wet season values were dominated by sewage material while dry
season values were dominated by mangrove material. Quantitative estimation of the contribution of the
identified sources indicated that sewage material contributed between 60% and 90% of the sedimentary
OM in the wet season and mangrove litter between 44% and 98% in the dry season.

Metal levels in the Mtoni sediment layers (0-3, 3-6, and 6-9 cm) showed neither distinct depth gradient
nor variation between wet and dry seasons. A clear gradient from the upstream of the Kizinga River to the
estuarine mouth was observed for all metals, except As. This was also observed from upstream of the
Mzinga River to the estuarine mouth. Pearson correlation matrix and Principal component analysis (PCA)
indicated that the selected compounds could be separated in 3 groups: (1) Cu, Ni, Cr, Mn, Zn, Al, Fe, As,
Pb; (2) Cd and TOC, which were strongly anti-correlated and (3) Sr. Enrichment factors (EF) indicated that
Sr was most probably derived from natural origin, while other metals in the Mtoni estuary originated from
anthropogenic activities. The levels of anthropogenic metals are indicative of human induced
environmental change and have repercussions on the future status of the estuary and of the coastal area
of Tanzania as a whole.

PCDD/Fs values as analysed by chemically activated luciferase gene expression (CALUX) method and
expressed as bioanalytical equivalency (BEQ) values ranged from 5.7 + 1.4 to 39.9 + 5.8 pg BEQ/g
sediment in wet season and from 14.1 + 2.0 to 32.8 + 4.7 pg BEQ/g sediment in the dry season. High
levels were observed in Kizinga River and stations close to the mouth of that river. Dioxin-like PCB (dI-
PCB) levels ranged from 0.21 * 0.03 to 0.53 = 0.03 pg BEQ/g sediment in wet season and from 0.22 +
0.03 to 0.59 + 0.04 pg BEQ/g sediment in the dry season. Higher PCDD/F and dI-PCB levels in sediments
are probably related to open burning of plastic scraps, household burning of wood or charcoal and traffic
related emissions, which all occur in the Dar es Salaam region. The denser population and the more
intense industrial activities in the Kizinga River Basin may explain the enhanced PCDD/F and dI-PCB levels
observed in the sediments of that River compared to those in the Mzinga River Basin. Enhanced levels in
the Kizinga River (up to 400 pg-BEQ/g) observed in the third sampling campaign showed a clear
decreasing concentration gradient in the downstream direction. The presence of these pollutants in the
sediments poses a threat to the biological community living in the Mtoni estuary.
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GENERAL INTRODUCTION

MANGROVE SEDIMENT AS A BIOGEOCHEMICAL INTEGRATOR OF MICRO-POLLUTANTS




CHAPTER ONE: MANGROVE SEDIMENT AS A BIOGEOCHEMICAL INTEGRATOR OF MICRO-
POLLUTANTS

1.1 MANGROVE ECOSYSTEM AS A BIOGEOCHEMICAL ENVIRONMENT

Superimposed by natural variability, the contemporary period is characterised by an ever-increasing
utilization of materials, energy and space that emanate from the growing human population,
industrial activity and intensive agricultural activities. Anthropogenic (i.e., human) activities due to
industrialisation, urbanisation, and population growth have resulted in formation and release of
stressors (micro-pollutants), which have the potential to impact the physical (e.g., affecting a
temperature change), biological (e.g., altering habitat consumption), and chemical (e.g., resulting in
increased risk of cancer) environments of the marine coastal system. These substances are brought
into the ecosystem either directly (through anthropogenic activities) or indirectly (through natural
processes). Once in the environment they are transformed through physico-chemical, microbial and
biological processes, during their transfer from their source into the marine ecosystem. As a result
of severe increase of human impacts on aquatic ecosystems there has been an increasing flux of the
chemicals in the marine environment.

Mangrove forests have shown to play an important role in the biogeochemistry of contaminants in
tropical coastal areas (Tam and Wong, 1996; Tam and Wong, 2000; Janaki-Raman et al., 2007). They
can be considered as chemical reactors due to biochemical and physiological processes as well as
their role in sediment chemical reactions that significantly affect the pollutant mobilities (Ramos de
Silva et al., 2006). The capacity of mangrove mud to accumulate discharged materials has made
mangrove areas to become dumping sites for solid wastes and for sewage disposal (Defew et al.,
2005; Mtanga & Machiwa, 2007; Kamaruzzaman et al., 2008). The high rates of sediment accretion
and stabilised vegetated nature make the mangrove wetlands highly efficient recorders of
environmental changes and, therefore, can be used to reconstruct coastal changes (Janaki-Raman et
al.,, 2007; Kamaruzzaman et al., 2008; Raju et al.,, 2010). Though the record can be altered by
sediment mixing effects that eventually affect the preservation of physical sedimentary structures,
this will depend on the rate of sediment accumulation as well as the nature, intensity and depth of
mixing (Kamaruzzaman et al., 2008). The elevated levels of micro-pollutants recorded in mangrove
sediments can thus reflect the long-term pollution caused by human activities (Tam and Wong,
2000).

The micro-pollutants can therefore be considered as inputs (source) to marine sediment and the
sediment as an output (sink) to these chemicals. At times, the system can be at equilibrium or rather
operates under steady-state conditions, particularly when a mass balance between inputs and
outputs has been achieved. However, the system may be perturbed, possibly by anthropogenic
activities, and therefore change towards a new equilibrium state. Transportation and
transformations processes within the reservoir will affect the temporal and spatial distribution of the
micro-pollutants. Whereas the transport effects are dominated by the hydrodynamic regimes,
transformations are affected by biological (microbial degradation, bioaccumulation and
biomagnification), chemical (dechlorination, reduction and oxidation) and geological (sedimentation)
processes. Therefore, the mangrove sediment as an entity can be considered as representing a
biogeochemical environment.

1.2 MANGROVE SEDIMENTS AS INTEGRATORS OF POLLUTANTS

Mangrove fine sediments (or mud-clay) can act as repositories for contaminants coming from the
atmosphere, water layer or brought by surface run-off. Mangrove sediments can bind to organic
pollutants which adsorb to the extensive surfaces provided by the fine particulate sediments. On the



other hand, metals can be trapped by forming complexes. Micro-pollutants may later become
remobilised when there is change in conditions of the environment (Vicente-Beckett et al., 2006).
Consequently, filtered pollutants in water will accumulate in estuarine and mangrove sediments
(Kruitwagen et al., 2008). The pollutants integrated in mangrove sediments include, among others,
organic matter, metals, polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans
(PCDFs) and polychlorinated biphenyls (PCBs) as detailed below.

1.2.1 Stable Isotopes and Isotopic Composition in Organic Matter

In natural conditions, most elements have more than one stable isotope. Stable isotopes which are
useful in biogeochemical research have (i) a large mass difference between the rare and the
abundant isotope, (ii) a low atomic mass leading to large mass differences, (iii) the rare isotope that
represents a small fraction of the total elemental occurrence (e.g. approximately 98.89% of all
carbon is **C, and only 1% is 13¢; Boutton, 1996), and (iv) more than one oxidation state (McSween et
al., 2003; Sulzman, 2007; White, 2007). However, the relatively homogeneous distributions of
isotopes of naturally occurring elements in the Earth’s crust ensure only little variations of the
elements isotopic composition (Emerson and Hedges, 2008).

It is of general knowledge that outer shell electrons of an atom control chemical reactions; thus, the
chemical behaviour of the various isotopes of an element is qualitatively similar (Sulzman, 2007;
Emerson and Hedges, 2008). While possessing the same fundamental chemical properties, the
different isotopes of an element differ in the density and rates of diffusion and evaporation which
are the direct consequences of their atomic mass (Jardine, et al.,, 2003; Bickert, 2006). As a result of
the difference in atomic mass, there is variation in the rate of reaction as well as isotopic bond
strength (Sulzman, 2007; Emerson and Hedges, 2008; Hoefs, 2009). In that way, heavier isotopes of
an element typically form slightly stronger bonds to other atoms, and molecules containing heavier
isotopes move somewhat more slowly at a given temperature owing to their greater mass (Emerson
and Hedges, 2008).

Variations in physical and chemical properties arising from differences in atomic mass of a chemical
element are a consequence of unequal stable isotope composition within different materials and are
linked to isotope fractionation (Hoefs, 2009). This phenomenon can be explained by the fact that
kinetic energy is constant for a given element in fixed environmental surroundings (Sulzman, 2007;
Hoefs, 2009). Isotopic composition in organic matter can be expressed using a fractionation factor (a)
and a delta value (8) as explained below.

1.2.1.1 Fractionation Factor (o)

In biogeochemistry, the equilibrium constant, K, for isotope exchange reactions is often replaced by
the fractionation factor, a, (White, 2007; Hoefs, 2009). The process of isotope fractionation is
mathematically described by comparing the isotope ratios of the two compounds in chemical
equilibrium (X$>Y) or of the compounds before and after a physical or chemical transition process
(X=>Y). The isotope fractionation factor, a,., is then defined as the ratio of the two isotope ratios
(IAEA-UNESCO, 2000):

R

_ Ry
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y

where R = isotope ratio = abundance rare isotope/abundance abundant isotope.

If the isotopes are randomly distributed over all possible positions in the compounds X and Y, then a
is related to the number of atoms exchanged, n, by:
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o= Kl/n
where K is the equilibrium constant.

Recently, it has been a common practice to replace the fractionation factor by the separation factor,
g, (which is defined as € = a - 1), because € x 1,000 approximates the fractionation in parts per
thousand, similar to the delta, §, value (Hoefs, 2009) as shown in the next subsection.

1.2.1.2 The Delta (8) Value and Isotopic Ratio Expression

For a chemical compound, whose isotopic composition has been determined by conventional mass
spectrometry, the isotopic composition is expressed in terms of 6 values (Sulzman, 2007; Hoefs,
2009). Since the isotopic differences between various materials are actually very small, isotopic
compositions are reported as the relative deviation from the isotope ratio of a standard reference
material, and the results are expressed in parts per thousand, %. (Emerson and Hedges, 2008), with
units given in per mil (Sulzman, 2007; White, 2007). In general terms, it is convenient to write:

R
S(y)= [R—”‘P' —ljx103

std

where y = heavy isotope of an element (e.g. °C, °N), and R = the ratio of the heavy isotope
(e.g. °C, N) over the light isotope (e.g. **C, **N) in the sample (Rsompre) and standard (Ryq).

For expressing the 6C of carbon compounds, the standard reference material is Pee Dee
Belemnite. For the 6N of nitrogen compounds, the standard reference is atmospheric N, gas.

1.2.1.3 Carbon and Nitrogen and their Stable Isotopes as Environmental Tracers

Organic matter in a given marine ecosystem can be supplied from both in situ primary producers
(autochthonous sources) and external sources of organic material (allochthonous sources) (Graham,
et al, 2001; Yu et al., 2010). The autochthonous sources involve primary production by
phytoplankton, microphytobenthos and higher plants as well as chemoautotrophic production. On
the other hand, allochthonous sources include marine and riverine inputs as well as direct domestic,
industrial and runoff inputs from the terrestrial environment (Middlelburg and Nieuwenhuize, 1998).

Intertidal mangrove ecosystems are an important interface for the carbon cycle in tropical coastal
environments and are considered to have significant impact on global carbon cycling due to their
productivity in the terrestrial ecosystem (Marchand, et al., 2008). They can transfer organic carbon to
nearby environments in the form of litter, particulate or dissolved organic matter (Bouillon et al.,
2003) and they have the ability to accumulate and store large amount of organic matter (Bouillon et
al., 2007) in their sediments.

The amount and origin of organic matter will depend on biological (consumption, removal), chemical
(degradation) and physical (tidal amplitude) factors acting on mangrove sediments (Bouillon et al.,
2003). In addition to the natural organic matter sources, human inputs, that involve large volumes of
poorly defined solid and human wastes which are sometimes discharged directly or after little
treatment into the area, significantly contribute to the sediment and water chemistry of the
mangrove ecosystem (Grace et al., 2008).

Sources of organic matter to mangrove sediments have been evaluated using their molar organic
carbon to nitrogen ratio (C/N) (Hu et al., 2006; Marchand et al.,, 2008) and stable carbon and



nitrogen isotopic signatures. Their use as source indicators relies on the fact that different organic
matter sources have different signatures (Marchand et al., 2008). The use of C/N ratio and stable
carbon and nitrogen isotopes as environmental tracers is briefly presented below.

1.2.1.3.1 Organic Carbon to Nitrogen Ratio as a Tracer

Changes in the C/N ratio in sediments have been used as a palaeoenvironmental proxy for the source
of organic matter within sediments (Ramaswamy et al., 2008; Yu et al., 2010). The use of the ratio
relies on the ability to distinguish and account for the varying sources of organic matter being
transported into a mixed water system such as a mangrove estuary. Fluctuations in this ratio over
time represent a shift in the sediment source at a given location (Woods, 2009). Specifically, C/N
ratio has been used to describe the fractional contributions of different end-members contributing
the organic matter or organic carbon in the environment (Gonneea et al., 2004; Giani et al., 2009;
Barros et al., 2010).

1.2.1.3.2 Stable Carbon and Nitrogen Isotopes as Tracers of Origin and Fate of Organic
Matter

Stable isotope analysis is widely used in environmental, biogeochemical and organic geochemical
studies to trace the dominant sources and fate of carbon and nitrogen in the changing environment
(Zhang et al., 2007) and for identifying the sources of the elements accumulating in sediments
(Cloern et al., 2002; Jardine et al., 2003; Emerson and Hedges, 2008). Stable isotopes have been used
to determine the presence and/or effects of allochtonous materials and the origin and destination of
organic matter in marine environment (Salazar-Hermoso, 2007). This relies on their ability to record
both source (equilibration) and process (fractionation) information (Emerson and Hedges, 2008).
Since the stable isotopic signatures can persist over geologic time even through severe changes in
chemical composition (Emerson and Hedges, 2008), it is possible to study the incorporation of
different carbon sources into food webs on the condition that there is a sufficiently large difference
in the isotopic composition of the different primary carbon sources such as terrestrial material,
phytoplankton and benthic microalgae (Bouillon et al., 2002).

Stable isotopes have been potential discriminators of organic matter source and fate in marine
sediment (Ramaswamy et al., 2008; Machiwa, 2010). They are used particularly to: (i) identify origins
(e.g., terrestrial or marine pollutant), (ii) infer processes (e.g., heterotrophic nitrification), (iii)
estimate rates (e.g., soil carbon turnover) and (iv) constrain, confirm or reject derived models
(Sulzman, 2007). Carbon and nitrogen stable isotopes can discriminate terrestrial and marine
sources, thereby identifying the origin of organic matter (Middlelburg and Nieuwenhuize, 1998;
Ramaswamy et al., 2008; Sampaio et al., 2010b) by considering the differences that exist between
naturally abundant isotopes in terrestrial and marine organic matter (Sampaio et al., 2010a). This is
because (i) consumers fractionate carbon and nitrogen in predictable ways that allow for the
identification of the isotopic composition of their food resource(s), (ii) relative contributions of some
primary producers can be differentiated by the variation in the carbon isotopic composition of plants
as a result of differences in growth environment and the biochemical pathways of photosynthesis
and biosynthesis (Cloern et al., 2002; Machiwa, 2010) and (iii) isotopic ratios are conservative, hence
the mixing of different sources will determine origin and distributions of organic matter in natural
systems (Cifuentes et al., 1988). Stable isotope compositions analyses are therefore valued as tracers
of important biogeochemical processes due to the fact that compositions integrate the cumulative
results of various ongoing processes such as the transfer of organic elements in trophic levels,
climate change and marine productivity (Zhang et al., 2007; Emerson and Hedges, 2008).



1.2.1.4 Analytical Methods used to determine bulk Elemental and Stable Isotopes in Sedimentary
Organic matter

Total carbon (TC), total organic carbon (TOC) and total nitrogen (TN) can be analysed in the sediment
solid phase using a CHN elemental analyser. Organic matter in a complex sample is quantitatively
converted to CO, N,, SO,, and H,0 by high temperature oxidative combustion at >900°C in an O,
atmosphere. The gases are then isolated and purified by cryogenic distillation or gas
chromatography. Since all substances carry a unique signature (proportion) of given variable forms,
their identification by isotope ratio mass spectrometry (IRMS) in the samples is possible (Jardine et
al., 2003).

Isotopic composition of the gases are determined by simultaneous collection of masses in the IRMS
(Boutton, 1996; Sulzman, 2007), e.g. for CO,, 44 (**C**0'®0), 45 (*C*®0'°0), and 46 (**C'*0™0). The
isotopic composition of the gases derived from a sample is compared to that derived from the
standard with known **C/*C ratio for carbon and *>N/**N for nitrogen (Boutton, 1996). An automated
preparation with low costs per sample and a large sample throughput offers a great advantage of this
technique (Hoefs, 2009). Since the heavier isotope has less interaction with the stationary phase in
the GC column, it will be eluted first allowing each peak to be integrated well for correct isotopic
ratio. For analytical reasons, a working reference standard is analysed roughly after every certain
number of samples in the same manner as the samples (Sulzman, 2007).

1.2.2 Metals in Mangrove Sediments

Metal elements in sediments exist in different chemical forms as free ions, dissolved species ans as
inorganic and organic complexes in the dissolved phase (Spencer and MaclLeod, 2002; Du Laing et al.,
2009), and as carbonates, silicates, sulphide, Fe-Mn oxyhydroxides and organic matter in the solid
phase. They may enter the estuarine environment via a number of pathways (Spencer and Macleod,
2002) such as natural processes (including erosion of ore-bearing rocks, wind-blown dust, volcanic
activity and forest fires) and processes derived from anthropogenic activities (Dell’Anno et al., 2003;
Chatterjee et al., 2007; Tranchina et al., 2008). Anthropogenic sources in mangrove ecosystems arise
from industrial effluents and wastes, urban runoff, sewage treatment plants, runoff from agricultural
field and domestic garbage dumps (MacFarlane and Bruchett, 1999, 2001; Dell’Anno et al., 2003;
Chatterjee et al., 2007; Tranchina et al., 2008). In addition, discarded automobiles and dumping
metallic substances have been the common anthropogenic inputs of metals (Kamau, 2002; Praveena
et al., 2010) that find their way into the marine ecosystem.

Metals are essentially a permanent addition to the aquatic environment as they cannot be chemically
degraded, and are not subject to biological degradation. As a consequence, they get accumulated
locally (MacFarlane and Bruchett, 2001; Defew et al., 2005) and/or transported over long distances
(Marchand et al., 2006). Metals are trapped by the sediments as a result of sedimentation of
suspended particles. Both natural (e.g. bioturbation, tides, erosion, etc) and anthropogenic (e.g. land
pollution, dredging, etc) processes and activities tend to act on metals in the sediments (Woods,
2009), but the major procecess controlling the distribution of the metals in the sediments is early
diagenesis, mainly oxidation of organic matter. In aerobic environments, oxygen reduction is the
main process, but in anaerobic conditions, nitrates, oxides and hydroxides of Mn and Fe and
sulphates consecutively become the electron acceptors in the oxidation process. With the exception
of sulphate reduction that precipitates the metals as sulphides; other diagenetic reactions release
the metals in the sediments. Metals are released from particulate organic matter (POM) after
degradation of POM and from Fe and Mn oxy-hydroxides after reduction and dissolution of these
minerals.



Marine environment is the ultimate destination of virtually all substances from areas affected by
pollution (Raju et al., 2010). Since metals are toxic, persistent, and non-degradable in the
environment, the contamination of sediments by the metals represent the greatest ecological risk to
coastal marine environment even at very small concentrations (Dell’Anno et al., 2003) especially to
the human population that relies on marine resources (Nobi et al., 2010).This has several effects to
the biological community, including diseases in plant and animal species, local or complete extinction
of some species and loss or modification of habitat (Raju et al., 2010). A rank ordering of the toxicity
of metals is: mercury (most toxic) > cadmium > copper > zinc > chromium > nickel > lead and arsenic
(least toxic) (McLusky and Elliott, 2004). With such high concentrations of metals expected and
detected in sediments, the bioavailability indices assumes considerable importance with respect to
bioaccumulation within organisms living in the mangrove environment (Defew et al., 2005).

Although metals are natural constituents of the earth’s crust and are present in all ecosystems, their
concentrations have been dramatically increased by human activities (Raju et al., 2010). Increased
population, urbanisation, industrial activities, urban agriculture as well as exploitation of natural
resources have resulted to converting open spaces into residential, industrial and agricultural areas
(De Wolf & Rashid, 2008). This has led to the occurrence of pollutants in the mangrove system due to
uncontrolled disposal of untreated domestic and industrial wastes (De Wolf & Rashid, 2008) into the
streams, valleys, rivers and finally into the marine ecosystem. Most of the anthropogenic pollution of
the marine realm has been the outcome of these human activities (Raju et al., 2010).

1.2.2.1 Sediments as Carriers of Metals in the Marine Ecosystem

Sediments are considered a suitable medium to study the contamination of aquatic environments
(Sprovieri et al., 2007) because they are metal carriers and the metals partition with the surrounding
waters reflecting the quality of an aquatic system. Sediment samples have added advantages over
other environmental samples when it comes to analysis of metals. Metals accumulate in sediments,
particularly in organically rich sediments, thus are easily measured and much less susceptible to
accidental contamination. Furthermore, sediments offer a degree of time integration, as they are
much affected by sediment characteristics that vary in particle size and organic carbon content
(Rainbow, 1995). However, measurements of metals in sediment provide an assessment of total
metal present, not of that portion that is available for uptake and accumulation i.e. the fraction that
is of ecotoxicological relevance (Rainbow, 1995).

Sediments can act as a source (MacFarlane & Burchet, 2000) and a long-term store for metals in the
marine environment (Spencer and MaclLeod, 2002) particularly when triggered by changes in abiotic
conditions such as pH, redox potential and salinity. Geochemical sediment characteristics can infer
the sources of pollution (Chatterjee et al., 2007). Because of their large adsorption capabilities,
sediments are the major arsenal for metals and can document various changes in contamination
(Nobi et al., 2010). In this way, profiles of pollutants in cores of marine sediment can record pollution
due to pollutant stability and as a result of insignificant mobility after deposition, pollutants will leave
imprints in the sediment (Chatterjee et al, 2007). Sediments tend to integrate geochemical
processes; hence the information from sediments can establish the long term behaviour of metals in
marine environment reflecting the history and anthropogenic impact (Kamau, 2002; Janaki-Raman et
al., 2007; Alaoui et al., 2010). Therefore, sediment core studies can be useful for ascertaining the
impacts of anthropogenic and natural activities on the mangrove ecosystem (Chatterjee et al., 2007).
Hence, metal content found in the sediments may reflect a diversified set of natural processes, from
erosion to early diagenesis, and anthropogenic influences (Alaoui et al., 2010).

Mangrove sediments, besides being rich in organic matter and sulphide, they have a large
proportion of fine particles, low pH, anaerobic as well as reducing nature (Tam and Yao, 1998;
MacFarlane & Burchet, 2000; Tam and Wong, 2000; Defew et al., 2005; Janaki-Raman et al., 2007;



De Wolf & Rashid, 2008). Because of these, they can effectively trap and favour retention of water-
borne metals (MacFarlane & Burchet, 2000; Defew et al., 2005; De Wolf & Rashid, 2008). This is
only possible through either (i) immobilising the metals in the anaerobic sediments by adsorption
on ion exchange sites on sediment particle surfaces, (ii) incorporation into lattice structures of the
clay particles, (iii) precipitation as insoluble sulphides (MacFarlane and Bruchett, 2001) or (iv)
oxidation of sulphides between tides (Defew et al., 2005), which further mobilises the once trapped
metals to increase their availability (De Wolf & Rashid, 2008).

1.2.2.2 Monitoring Metal Pollution in Sediments

The absolute concentration of metals in marine sediments never indicates the degree of
contamination coming from either natural or anthropogenic sources because of grain-size
distribution and mineralogy (Tam and Yao, 1998). Anthropogenic disturbances can be evaluated
without any complexity by comparing the sediment metal content of the study area with the world
averages and the values of nearby areas. Various biogeochemical tools have used to compare and
monitor metal pollution in location and depth as a way to differentiate between the natural
variations from changes due to anthropogenic deposition of elemental concentrations. These tools
include, among others, enrichment factor (EF), which is briefly discussed below.

1.2.2.2.1 Enrichment Factor and the Reference Metal

Enrichment factor (EF) is a useful indicator reflecting the status and the degree of environmental
contamination (Feng et al., 2004). EF is regarded as a convenient measure of geochemical trends and

is calculated as:
EF _ l)%/l JSample

i [)%/I ];I’USt

where X is the concentration of the metal studied and X/M is the ratio of the amount of
studied metal to a reference metal. Whereas, EF>1 indicates magnification, more abundance
that the average, absence of enrichment or depletion relative to the Earth’s crust is denoted
by unity.

The EF calculation seeks to reduce the metal variability associated with variations in mud/sand ratios,
and is a convenient tool for plotting geochemical trends on a large geographic domain with varied
sediment particle sizes (Abrahim and Parker, 2008).

Normalisation of the measured amount of metal to a reference metal, such as Al and Fe, is a
convenient method to differentiate whether the metal originate either from anthropogenic activities
or lithogenic sources (Zhou et al., 2007) as well as for the regional comparison. The normalisation
elements tend to co-vary with grain size and as such their use can represent several underlying
geochemical relationships (Gonzalez-Macias et al., 2006). In addition, the elements act as a proxy for
the clay content (Abrahim and Parker, 2008). Due a linear relationship that exist between the
normaliser concentrations and the fine particle-size fractions (silt+clay) of the samples in most
sedimentary environments (Liu et al., 2003), geochemical normalisation can compensate for both
granulometric and mineralogical variability of metal concentrations in sediments (Aloupi and
Angelidis, 2001). Thus, the use of normaliser as a substitute for the granulometric variability of the
sediments is justifiable.

Iron can be used to normalise the metal data because (i) it is associated with fine solid surfaces and
its distribution is not related to other metals and (ii) it is available in a relatively high and uniform



natural concentration, and is therefore not expected to be substantially enriched from
anthropogenic sources in estuarine sediments (Abrahim and Parker, 2008). However, it is a redox
sensitive element and therefore behaves quite differently than most of the trace metals that are not
redox sensitive. Aluminium can also be used as a normalisation element due to its consistence as
being a major constituent of fine grained aluminosilicates in which the metals become associated. In
addition, Al is highly refractory and anthropogenic influences on the metal are generally minimal
(Rokade, 2009).

1.2.3 Dioxins and Dioxin-Like PCBs in Sediments

Polychlorinated dibenzo-p-dioxins (1) and polychlorinated dibenzofurans (1) are halogenated,
tricyclic aromatic compounds, comprising of two benzene rings connected by one or two oxygen
atoms (El-Kady et al., 2007; Srogi, 2008; Gevao et al., 2009). Both chemical groups have chlorine
atoms that give rise to several isomers or congeners which can be differentiated by the position and
total number of chlorine atoms present (Killops and Killops, 2005).

Hence, 75 possible PCDD and 135 possible PCDF congeners (Table 1.1) can be formed, where those
having the same number of chlorine atoms form a homologue group (Smith and Lopipero, 2001;
Srogi, 2008;). As the two chemical families (dibenzo-dioxins and dibenzofurans) are closely related in
structure, they are commonly known as dioxins (Smith and Lopipero, 2001; Gevao et al., 2009) and
abbreviated as PCDD/Fs.




Table 1.1: Numbers of Possible PCDD and PCDFs Homologues and Congeners

Number of Halogen substitutions Number of Congeners
(Homologue)
Dibenzo-p-dioxins Dibenzofurans

Mono- 2 4
Di- 10 16
Tri- 14 28
Tetra- 22 38
Penta- 14 28
Hexa- 10 16
Hepta- 2 4
Octa- 1 1
Nona- - -
Deca- - -
Total 75 135

Polychlorinated biphenyls, PCBs (3) are chemically similar in structures to the PCDD/Fs. They,
however, lack oxygen atoms and are less structurally rigid (rotation possibilities of the C-C bond
depending on the substitution pattern of both benzene rings) compared to PCDD/Fs.

Several chlorination patterns of the parent biphenyl exist and give rise to a total of 209 individual
PCB congeners (Killops and Killops, 2005), as shown in Table 1.2.



Table 1.2: Number of possible PCB congeners by degree of chlorination

Degree of Chlorination PCB Number of congeners
(Homologue) formula
Mono- Cy1,HoCl 3
Di- Cy,HsCl, 12
Tri- Cy,H,Cls 24
Tetra- C,HeCly 42
Penta- Cq,HsCls 46
Hexa- C1,H4Clg 42
Hepta- Cy,H3Cly 24
Octa- Cq,H,Clg 12
Nona- C4,HClq 3
Deca- C12Clyo 1
Total 209

According to World Health Organisation (WHO), twelve PCBs that have 4 to 8 chlorine atoms,
including four non-ortho (IUPAC Nos. 77, 81, 126 and 169) and eight mono-ortho (IUPAC Nos. 105,
114, 118, 123, 156, 157, 167 and 189) are conformationally similar to the PCDD/Fs. These PCB
congeners elicit similar biochemical and toxic responses to dioxins and are therefore known as
dioxin-like PCBs (Smith and Lopipero, 2001; Sanctorum et al., 2007b; Okay et al., 2009; Pan et al.,
2010). Due to their chemical stability, lipid solubility, and ubiquitous prevalence in the environment,
PCDDs, PCDFs and PCBs are listed in the Stockholm Convention as Persistent Organic Pollutants
(POPs) (El-Kady et al., 2007; Shen et al., 2008). The POPs list contains 12 initial compounds: 9
organochlorine pesticides and the PCDDs, PCDFs and PCBs as the remaining 3 compounds (each in
fact represents a group of compounds). Within the dioxins (PCDD/Fs) group, 7 PCDDs and 10 PCDFs
are considered toxic (Van den Berg et al. 2006). The PCB group contains 12 congeners that are in this
category.

1.2.3.1 Sources and Use of PCDD/Fs

PCDD/Fs are present in the environment as unintended by-products of various technological
processes and, as such, have never been produced commercially (Roots et al., 2004). They may
originate from natural combustion processes, such as bushfires and volcanoes (Birch et al., 2007).
Anthropogenically, they are produced during incomplete combustion processes (Pan et al., 2010)
when wastes containing chlorine and carbon, like polyvinyl chloride plastics, are incinerated
(Manahan, 2000; Liu et al., 2006; Birch et al., 2007; De Wolf & Rashid, 2008; Terauchi et al., 2009).
The formation of dioxins in such incinerators takes place due to the presence of chlorine, carbon,
oxygen as well as catalytic metals (Manahan, 2000).

10



From an industry point of view, PCDD/Fs can be formed during manufacture of various chlorinated
chemicals (Mdller et al., 2002; Ryoo et al., 2005; El-Kady et al., 2007). In this specific case, dioxins
are produced as by-products of chemical reactions (Pan et al., 2010), e.g. when products such as
wood preservatives and pesticides such as pentachlorophenol (PCP) are produced. Thus, elevated
PCDD/F concentrations are typically associated with highly urbanised and industrialised areas
(Muller et al., 2002). It’s these areas where combustion processes from waste incinerators, power
plants and automobile exhausts (Zhang et al., 2010), cement manufacture, cigarette smoke (Gevao
et al., 2009), municipal wastewater effluents (Moon et al., 2009) as well as industrial processes,
such as pulp bleaching and metal refining/melting are found (Bruckmeier, 1997).

1.2.3.2 Sources and Use of PCBs

PCBs were once produced worldwide as commercial chemicals (Koistinen et al., 1997; Srogi, 2008).
The first synthesis of PCBs was described in 1881 (Schmidt and Schultz, 1881), and from 1930 their
industrial application started (Erickson, 1997). Since then, PCBs have been found in many industrial
and consumer products (Liu et al., 2006; Wang et al., 2007) and widely used in electronic appliances
and hydraulic fluids (Shen et al., 2008; Yang et al., 2009). Well-known sources of PCBs include the
historical use and disposal of industrial PCB products and by-products of waste incineration (Pan et
al., 2010). PCBs can also be formed during the operations of electric arc furnaces and can occur in
effluents from paper mills and the chloroalkali industry. Non-ortho PCBs, which do not originate
solely from commercial PCB mixtures, can be formed during coal combustion and industrial waste
incineration particularly when the combustion temperature is not sufficiently high for destruction,
that is less than 800 °C (Chi et al., 2007).

PCBs have been used as anti-corrosion materials, coolants and insulators in heat transfer systems
such as transformers (Shen et al., 2008; Srogi, 2008), and as capacitors in electrical industries (Pan et
al., 2010). Moreover, they have been used as plasticizers, hydraulic and dielectric fluids, fire
retardants, lubricating oils (Bruckmeier, 1997) and additives in paints (Nhan et al., 1999), pesticides
and inks (Killops and Killops, 2005; Srogi, 2008; Fouial-Djebbar et al., 2010). Commercial PCB mixtures
were sold under the names of, among others, Aroclor, Fenclor, Phenochlor, Clophen and Kanechlor
(Srogi, 2008). The high chemical stability (low flammability), high thermal stability, high electrical
insulating properties (El-Kady et al., 2007), high electrical resistance and low volatilities made the
PCBs suitable for their intended commercial use (Killops and Killops, 2005).

During their manufacture and use, PCBs can be released into the atmosphere through smokestacks
and weathering of asphalt and other substances as well as burning products containing these PCBs
(Zhang et al., 2010). They can also be released from leaking transformers containing PCBs,
incineration of wastes, burning domestic garbage as well as improperly and illegally disposed
industrial wastes (Wang et al., 2007).

1.2.3.3 Chemodynamics of Dioxins and Dioxin-Like PCBs

When dioxins and dioxin-like pollutants are adsorbed onto soil, their predominant fate is to remain
sequestered on the soil surface and be released into the water body through soil erosion. In the
water column they primarily undergo sedimentation and burial, thereby providing their ultimate
environmental sink in aquatic sediments (Smith and Lopipero, 2001). Dioxins and dioxin-like PCBs can
enter the aquatic environment through coastal processes such as riverine discharges and homeland
run-off, and can be stored in mangrove sediments (Hu et al., 2005). Moreover, atmospheric transport
via dust particles, industrial emissions and long range deposition also contribute to accumulation in
sediments (Danis et al., 2006).
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1.2.3.3.1 Fate of PCDD/Fs in Sediments

PCDD/Fs are thermally stable and resistant to biodegradation in the environment. The fate of these
compounds is therefore governed by their low reactivity (persistence), volatility (potential for
vapour-phase transport), low solubility in water and high lipophilicity (Table 1.3). In view of their
global distribution, these chloroaromatics appear to photodegrade slowly. Usually, the more chlorine
atoms that are present, the more stable is the compound and therefore the greater the persistence
(Wright, 2003). As a result, they are ubiquitous in the environment and are detected in
approximately all natural aquatic environmental samples, especially in suspended particulate matter
within the water column where they become bound (Wright, 2003).

Table 1.3: Physico-chemical Properties of Some PCDD/Fs: after Srogi, (2008)

Homologue Solubility at 25°C Log Kow Vapour Pressure Henry's Law Constant
group mg/L mm Hg at 25°C atm-m®/mol
TetraCDD 7.9x10°-4.7x 10" 6.6-8.7 74x10"-75%x10° 7.01-16.1x10°
PentaCDD  1.18x10™ 8.64-9.48 6.6x10™" 2.6x10°

HexaCDD 4.42x10° 9.19-10.4  3.8x10™ 44.6x10°

HeptaCDD  1.9x10°%-24x10°  9.69-11.38 5.6X10™-7.4x10% 1.31x10°-2.18x10"

OctaCDD 7.4x10%-2.27x10° 8.78-13.37 8.25x107" 37.9x10°
TetraCDF 4.2 x10* 6.2 2.5x10% 6.06 x 10™
PentaCDF 2.4x 10" 6.4 2.7x10° 2.04x 10"
HexaCDF 1.3x10° 7.0 2.8x10™% 5.87x 10
HeptaCDF  1.4x10° 7.9 9.9x10™ 5.76 x 10™
OctaCDF 1.4x10° 8.8 3.8x 10" 4.04 x 10°

In sediment, PCDD/Fs tend to associate with organic matter owing to high lipophilic and low water
solubility capacities (Gevao et al., 2009). Due to low water solubility and volatility, they are deposited
into aquatic systems, mostly in sediments which act as a sink and a long-term source in the marine
sediment system (Miiller et al., 2002; Pan et al., 2010). Once adsorbed to particulate matter, they
exhibit little potential for significant leaching or volatilisation and hence, their persistence in the
environment is emphasised (Smith and Lopipero, 2001). Moreover, their chemical stability affords
significant bioaccumulation and biomagnifications in the marine biota (Ryoo et al., 2005).

The degradation of dioxin congeners is through the dechlorination process that leaves the parent
molecule (dibenzo-dioxin or dibenzofuran) intact. For example, 1,2,3,4-tetrachlorodibenzo-p-dioxin
(4), undergoes anaerobic reductive dechlorination to give 1,2,3-trichlorodibenzo-p-dioxin (5) and
1,2,4-trichlorodibenzo-p-dioxin (6) that further degrade to 2-chlorodibenzo-p-dioxin (7). Similarly,
1,2,3,7,8-pentachlorodibenzo-p-dioxin (8) gives 1,3,7,8-tetrachlorodibenzo-p-dioxin (9) and 2,3,7,8
tetrachlorodibenzo-p-dioxin (10) which degrade further to 2,7-dichlorodibenzo-p-dioxin (11) and 2,8-
dibenzo-p-dioxin (12) (Killops and Killops, 2005). There are various degradation pathways, but those
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of 1,2,3,4- TCDD and 1,2,3,7,8- PCDD have been shown below to depict the high chemical stability
and recalcitrant nature of these compounds.
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PCDD/Fs are highly toxic (Ryoo et al., 2005) and can produce a variety of potential health effects in
organisms which include dermal toxicity, immunotoxicity, teratogenicity, carcinogenicity and other
adverse effects on reproduction, development and endocrine functions (Smith and Lopipero, 2001;
Roots et al., 2004). The toxicity associated with PCDD/Fs is induced through the binding of the
compounds to the aryl hydrocarbon receptor, AhR (Denison and Heath-Pagliuso, 1998; Hahn 2002).
The effect is more pronounced to those isomers presenting the chlorines in the 2,3,7,8 positions (7
PCDDs and 10 PCDFs), which are more toxic (Srogi, 2008; Okay et al., 2009; Pan et al., 2010).
However, increasing the substitution causes a decreased potency (Smith and Lopipero, 2001).
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Contamination of sediments may pose a risk to marine organisms that tend to bioaccumulate
PCDD/Fs and to other organisms through the ingestion of contaminated food and feedstuff (Eljarrat
et al., 2001).

1.2.3.3.2 Fate of PCBs in Sediments

PCBs have extremely low solubilities in water (Okay et al., 2009), low vapour pressure (Smith and
Lopipero, 2001) and high octanol-water coefficients i.e. large log K,,, values (Yang et al., 2009). PCB
degradation in the environment occurs only slowly (Zhao et al., 2010). Like the PCDD/Fs, increasing
the number of chlorine atoms in a molecule increases the stability and persistence (Wright, 2003).
Despite their recalcitrant nature, lower substituted PCBs (up to 4 chlorines) can be aerobically
degraded by some bacterial strains through meta-cleavage of the unchlorinated 2,3-carbons.
Oxidation may also take place on the chlorinated ring, provided that the 2,3 carbons in the
chlorinated ring are not obstructed.

When released from their sources, they travel long distances and are finally deposited (Killops and
Killops, 2005; Lee et al., 2006; Wang et al., 2007), where they have the potential to elicit their effects.
Partial volatility of PCBs at ambient temperatures will direct their remobilisation and release into the
atmosphere from both soil and water. Re-deposition of PCBs is brought about by wet or dry
deposition (Killops and Killops, 2005). From what is known on the physico-chemical properties
coupled with their widespread occurrence, persistence (Smith and Lopipero, 2001), and
bioaccumulation (Kang et al., 1997; Nhan et al., 1999; Birch et al., 2007; Bhavsar et al., 2008), PCBs
tend to accumulate and are likely to be associated primarily with sediments (Killops and Killops,
2005).

Sediment transport in water bodies is the dominant transport mechanisms responsible for the
widespread occurrence of PCBs in the marine environment (Smith and Lopipero, 2001). Being
hydrophobic in nature, they will very quickly bind to organic rich suspended particles in the water
column and later transported to the bottom sediments where their incorporation can be delayed due
to resuspension and bioturbation (Gevao et al., 2009). Remobilisation of surficial sediment-
associated PCBs can occur during natural events, such as high river flows and storms or during
human activities (Yang et al., 2009). As a result, they continue to be detected for very long periods
(zhao et al., 2010). The major concern of sediment-associated chemicals is their entry in the food
chain and the toxicity and adverse effects (Lee et al., 2006; Gevao et al., 2009; Terauchi et al., 2009).

Like the PCDD/Fs, the biological effects and toxicity of PCBs depend on the number of chlorines and
the position of the halogens in the compound (Killops and Killops, 2005; de Souza et al., 2008;
Bhavsar et al., 2008). PCBs tend to elicit endocrine disruption (Wang et al., 2007) and are potent
inducers of liver microsomal aryl hydrocarbon hydroxylase (Eljarrat et al, 2005). Due to
contamination and their toxic effects, these dioxin-like compounds pose a major environmental and
human health risk (Bhavsar et al., 2008; Okay et al., 2009). In humans, PCBs are believed to cause
reduced male fertility, long-term behavioural and learning difficulties, particularly in children (Wright,
2003).

1.2.3.4 Sediment as Source and Sink of Dioxins and Dioxin-Like Compounds

The occurrence of chlorinated organic compounds in the marine environment is of international
concern due to their persistence, toxicity, bioaccumulation and biomagnification (Tyler and Millward,
1996). The concern is aggravated when it comes to mangrove ecosystem because of their importance
as growth niches and areas for mammals, birds and reptiles to obtain food. For humans, the use of
the ecosystem as a source of materials is linked to various socio-economic activities. The
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hydrodynamics of mangrove ecosystems favour deposition of sediments and it is in sediments where
the various pollutants concentrate (de Souza et al., 2008).

Coastal marine environments are known to receive large amounts of pollutants and have been
considered as most susceptible areas for the accumulation of toxic compounds (Kumar et al., 2008).
They usually act as temporary or primary long-term sinks (Mdller et al., 1999; Chi et al., 2007; Pan et
al., 2010) for PCDD/Fs and PCBs and consequently act as the source of these substances to the ocean
and biota (Guzzella et al., 2005). Being the principle pool for pollutants, the estuary signifies a source
for further release to other environmental compartments (Zhao et al., 2010).

Sediments can be used to evaluate pollutant sources, historical trends, and fate processes (Mdller et
al., 1999; Lee et al., 2006; Moon et al., 2009) since the amounts of contaminants in sediments reflect
their regional or global discharges. The estuary and its surrounding environment can therefore be
used as indicator for long-term monitoring of many environmental contaminants (Zhao et al., 2010).

Marine disposal of sewage sludge and contaminated municipal and industrial wastewater can release
a large amount of these anthropogenic compounds resulting into contamination of coastal marine
environments (Eljarrat et al, 2001; Gevao et al., 2009). Natural and anthropogenic sources
continuously add various compounds to the aquatic ecosystem where they pose a serious threat
because of their toxicity, long time persistence, bioaccumulation, and biomagnifications in the food
chain (Kumar et al., 2008). In addition, contaminated sediments may constitute a particular threat to
associated biota and other organisms in the marine environment (Zhao et al., 2010). Increased
industrialisation, population and various anthropogenic activities contribute to their elevated levels
in the environment (Kumar et al., 2008).

1.2.3.5 Analysis of Dioxin and Dioxin-Like Chemicals in Sediments

Various analytical methods have been used to characterise PCDD/Fs and dioxin-like PCBs in
sediments. Gas chromatograph - high resolution mass spectrometry (GC-HRMS) offers a possibility to
chemically identify and quantify individual congeners (Schecter et al., 1999; Besselink et al., 2004) in
the matrix and enables the assessment of risks associated with the congeners (Long et al, 2006). The
GC-HRMS technique assumes that (i) the additivity principle of pollutant response or effect holds (ii)
there is an absence of agonistic and antagonistic interactions and (iii) the compounds produce a
response (toxicity) under the same dioxin-like mechanism. However, this technique has limitations in
that PCDD/Fs and dioxin-like PCBs exist as complex mixtures of congeners that elicit synergistic and/
or antagonistic interactions with different toxicity mechanisms (Schroijen et al., 2004; Joung et al.,
2007). Chemical analysis of individual congeners particularly in small concentrations can be very
expensive and time consuming. More so, the presence of compounds with AhR affinity but not
commonly measured and absence of toxicological equivalents (TEQ) for several congeners further
limit the use of this analytical method (Long et al., 2006; Joung et al., 2007).

Biological assays utilising either biomolecular techniques (e.g. immunoassays) or living materials (e.g.
in vitro chemically activated luciferase gene expression, (CALUX) have been developed to overcome
the observed drawbacks in the chemoanalysis method. Unlike the chemoanalysis, bioassay
techniques screen for chemicals with selective and specific biochemical interactions (Roy et al.,
2002). In particular, CALUX bioassay screens for chemicals with AhR potential (Schecter et al., 1999;
Song et al.,, 2006) and produces a single integrated biological equivalency (CALUX-BEQ) of the
mixtures instead of congener specific information (Besselink et al., 2004). It also measures a
response which is a single toxicity end-point produced by AhR active compounds that cannot be
measured (Joung et al., 2007) by chemoanalysis or when the target compounds are below the
chemo-analytical detection limit. Moreover, the CALUX bioassay provides an account of the non-
additivity, violating the assumption in chemoanalysis (Hurst et al., 2004).
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CALUX bioassay uses genetically modified cells (hepatoma cells stably transfected with a reporter
gene) which respond to chemicals that activate the cytosolar AhR by induction of luciferase (Denison
et al., 2004 and see Figure 1.1).
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Figure 1.1: Molecular Mechanism of TCDD induced gene expression and related AhR agonists
(Denison et al., 2004)

The AhR is a protein complex with great affinity and low capacity (one site per molecule) that binds
to various polyhalogenated aromatic hydrocarbons (Denison et al., 2003). As a ligand-dependent
transcription factor, the AhR not only binds and is activated by dioxins and related chemicals but is
also responsible for mediating the toxicity of these chemicals (Windal et al, 2005). The third
generation recombinant mouse hepatoma cell lines, H1L7.5c1, stably transfected with luciferase
reporter gene, pGudLuc 7.5 (He et al.,, 2011, Van Langenhove et al., 2011) offers advantages of
sensitivity because it contains five dioxin responsive domains (DRDs) each with four dioxin response
elements (DREs).

Once dioxins and dioxin like-PCBs interact with the AhR, the formed AhR-ligand complex is
translocated to the nucleus (Murk et al., 1996; Schecter et al., 1999; EPA, 2008). In the nucleus, it
binds to dioxin responsive elements (DRE) in the dioxin responsive domain (DRD) stimulating the
transcription of a luciferase gene (Murk et al., 1996; Joung et al., 2007; Sanctorum et al., 2007a).
The toxicity of these pollutants is produced either as a change in gene expression mediated through
the AhR or by interference with other pathways (Hurst et al., 2004). Estimation of relative potency
and toxic potential can therefore be done by measuring the activation level of AhR gene expression
(EPA, 2008).

CALUX can be used for the detection and quantification of dioxins, furans, and dioxin-like PCBs
present in biological and environmental samples (Schecter et al., 1999; Song et al., 2006). It has been
used to analyse sediment, soil, fly ash, stack gas emissions, food, feed, blood, and water suspected of
being contaminated with the chemicals (Song et al., 2006; EPA, 2005). The bioassay is particularly
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useful for the rapid screening of total concentrations of the compounds in sediments (Song et al.,
2006). Results obtained with the CALUX bioassay are given in BEQ as opposed to the TEQ associated
with GC-HRMS. The biologically more relevant data is simply given by the ratio of TCDD’s ECsq
(Effective Concentration at 50% induction) over the ECs, of the sample and are expressed in pg TCDD
BEQ/g sediment (Elskens et al., 2011). The approach is fast and more cost-effective and offers an
alternative for the identification and quantification of the AhR agonist chemicals (Schecter et al,
1999; Song et al., 2006).

1.3 CURRENT SITUATION OF MANGROVE ECOSYSTEMS IN TANZANIA

Majority of anthropogenic activities are more and more localised near the coastal areas (Tranchina et
al., 2008). The increasing growth of human population along the coastal areas has deteriorated the
environmental quality of most rivers and the effects of anthropogenic activities are higher in coastal
areas adjacent to urban cities (Tam and Wong, 2000). Mangroves occupy mouths of most large rivers
along the coast of Tanzania (Figure 1.2). They stretch along the coastal districts from Tanga to
Mtwara with the largest continuous mangrove areas being found on the coasts of Tanga district in
the north, the Rufiji River delta in Kilwa and Lindi districts, and in Mtwara, where the Ruvuma River
forms an estuary close to the Mozambique border (Mainoya et al., 1986). Despite their importance
to humans, wildlife and global carbon balance, mangroves are generally undervalued and
overexploited. Coastal and estuarine areas have been the final repositories of persistent pollutants
(McLusky and Elliott, 2004; Chatterjee et al., 2007), exposing the various mangroves to high degree
of contamination. Due to their position and trapping capacity, the pollutant levels are likely to reflect
the use of pollutants in the shores and the surroundings (Kruitwagen et al., 2008).

It is a fact that coastal cities in East Africa are expanding rapidly due to high population growth and
constant immigration from inland areas. Like other countries, Tanzania is experiencing increasing
impacts of environmental degradation, with rapid population growth and the industrial activities
putting tremendous pressure on the local environment. The increasing degradation of coastal
resources are fuelled by poverty, rapid population growth along the coasts as well as lack of proper
management and awareness (Taylor et al., 2002). The major sources of micro-pollutants in coastal
mangrove systems in Tanzania include production and use of chemicals and consumer products,
waste incineration, uncontrolled combustion processes, power generation and burning of plastic
wastes.
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Figure 1.2: Map showing the location of mangrove forests in Tanzania

Tanzania has a few industrial centres, with most of them concentrated in the Dar es Salaam city.
Being both the major industrial as well as the largest city, Dar es Salaam’s population and level of
industrial activities have steadily increased (Machiwa, 1992). This increased development has
resulted in an uncontrolled disposal of domestic and industrial wastes (Ak'habuhaya and Lodenius,
1988; Machiwa, 1992). Most domestic wastes generated by the Dar es Salaam residents are
discharged directly into the streams untreated and, as such, transported towards the coastal area
(De Wolf et al., 2001). Some factories have been built close to the rivers where there are deliberate
or accidental releases of industrial effluents into local waters that end up into the mangrove
ecosystem. The twelve rivers (including Kizinga and Mzinga) draining different areas of the city
constitute the major transport pathways for pollutants from residential and industrial areas into the
Indian Ocean (Gaspare et al., 2009). The Msimbazi River, which is among the waterways draining the
urban area of Dar es Salaam, has been identified as highly polluted (Ak’habuhaya and Lodenius,
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1988; Machiwa, 1992; De Wolf et al., 2001). It is anticipated that the similar situation may exist in the
Mtoni estuary where Kizinga and Mzinga streams enter the ocean.

There is an increased contamination of the coastal area by increased urban wastewater production,
riverine discharge, dumping and uncontrolled sewage drainage (Machiwa, 1992; PUMPSEA, 2007).
The sewage contains various substances such as organic matter, nutrients, pathogenic
microorganisms, metals, suspended solids and organic pollutants. Studies indicate that there are
significant concentrations of metals (Machiwa, 1992; Machiwa, 2000; Mremi and Machiwa, 2003),
pesticide residues (Mwevura et al., 2002) and PAHs (Gaspare et al., 2009) in sediments in the near
shore mangrove areas of Dar es Salaam. The various industrial, economical and social activities
suggest that metals and the organochlorine compounds (PCDDs, PCDFs and PCBs) might be released
in high quantities to the coastal environment. Due to lack of effective urban planning and the rapid
population growth resulting from urbanisation and industrial development, undesirable
consequences are expected.

1.3.1 Anthropogenic Organic Matter in the Coastal Tanzania

Mangrove environments in coastal areas have been increasingly impacted by various socio-economic
activities. Natural and anthropogenic changes including industrial and domestic pollution (oil spills,
effluents, wastes and global climate change) are among the unprecedented threats. This is
aggravated by the pressures from increased coastal population and the exploitative use of resources.
Economic and developmental activities have resulted in increased sedimentation rates in coastal
areas and increased inputs of anthropogenic organic carbon to the mangrove ecosystem (Hu et al.,
2006). Mangroves in the coastal Tanzania are thus affected by both pollution drain as well as human
clearance for firewood, tannin extraction, timber, building poles and to obtain land for salt extraction
(Mainoya et al., 1986; De Wolf et al., 2001).

In Tanzania, significant amounts of different agricultural, domestic, and industrial wastes are
discharged into the streams, rivers, estuaries and ocean. As estuaries serve as final receptors of
natural and anthropogenic organic matter carried by rivers into the ocean (LU and Zhai, 2006), most
of these loads are deposited in the mangrove environments, which continuously receive a
presumably high influx of anthropogenic products. As a result, the type, nature and content of
organic matter in Tanzanian mangrove sediments and their C/N, 6°C and >N may reveal different
signatures.

1.3.2 Metals in the Contemporary Coastal Ecosystems

Majority of anthropogenic activities are more and more localised near the coastal areas (Tranchina et
al., 2008). Industrialisation and urbanisation along the coastal towns and cities have led to a strong
risk of metal contamination (Tam and Yao, 1998). Urban and industrial activities have contributed to
the input of significant amounts of metal pollutants into the marine environment and directly affect
the coastal ecosystems in which they find a final destination. Mangrove areas are close to urban
cities and they continuously receive industrial and domestic run-off that contain metals in various
forms (Defew et al., 2005; Kamaruzzaman et al., 2008). Direct and indirect disposal of waste products
into rivers and estuaries, especially those in industrial and urban areas, has led to a significant
increase in metal contamination (Alaoui et al., 2010). Metals from incoming tidal water and fresh
water sources are rapidly removed from the water body and deposited onto the mangrove
sediments. Hence, the contemporary metal concentrations in coastal marine environment have
increased (Tranchina et al.,, 2008) and mangrove ecosystems are under serious human threat (Tam
and Wong, 2000).
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At present, the anthropogenic contribution of the metals into the marine environment in Tanzania
and the impacts of metal contamination in the coastal ecosystems are alarming. There has been an
increase in industrial activities, traffic and traffic related activities, urban agriculture in valleys and
near rivers that drain their water into mangrove ecosystems and direct contamination via dumping
of metallic substances or wastewater discharges (Ak'habuhaya and Lodenius, 1988; Machiwa, 1992;
Machiwa, 2000; De Wolf et al., 2001; Taylor et al., 2002; Mremi and Machiwa, 2003). As the lives of
people have higher dependence on the coastal resources for fishing, salt extraction, tourism and
other related activities, even a small variation in the ocean surroundings can have severe impact on
those lives.

1.3.3 Dioxins and Dioxin-Like PCBs in the Contemporary Tanzania

Although the official use of dioxin-like PCBs in Tanzania is not known, the presence of these
substances in transformers, electrical equipments, ship painting and other industrial activities is
common. In addition, the involuntary production, especially via incineration, of dioxins is neither
known. In the coastal Tanzania, there are a lot of municipal, chemical and even hospital wastes that
are directed into the Indian Ocean with incineration and burning being the main treatments. This
probably increases the levels of the pollutants. Wood burning is a common source of household
emissions as most households use either charcoal or firewood for cooking. In many local households,
plastics have become a common substance to light fire on charcoal when burnt. Recently, vehicle
emissions resulting from traffics and importation of used and old cars are now common in Tanzania.
Public allegations that electrical transformers are vandalised in search of their coolant for unspecified
domestic and commercial use in large cities calls for research in different food and environmental
matrices in a way to create public awareness on these types of fluids in general.

Because of omnipresence, the dioxins and dioxin-like pollutants co-exist in most environmental
matrices. Therefore, simultaneously monitoring their levels in environmental samples, particularly
the mangrove ecosystem, is highly desired in order to assess their sources and fate in the marine
system (Liu et al., 2006). As estuarine sediments are an important sink for these contaminants in the
aquatic environment, the study of sediments is an important step in mapping possible source and
transport pathways of the contaminants to the marine ecosystem (Covaci et al., 2005).

1.4 DESCRIPTION OF THE MTONI ESTUARY

The Mtoni estuary is located at approximately 3 km south of Dar es Salaam (Tanzania) and is fed by
two rivers: Kizinga and Mzinga. The creeks have mangrove trees such as Avicennia marina,
Bruguiera gymnorrhiza, Ceriops tagal, Rhizophora mucronata and Sonneratia alba species growing
on both sides (Mlay et al., unpublished).

The average annual precipitation of the Dar es Salaam region is around 1100 mm (Mtoni et al.,
2012). December and January have an average precipitation rate of 194 and 89 mm, respectively,
while these rates in July and August are much lower with 48 and 47 mm respectively. River flows in
the Dar-es-Salaam area are mainly controlled by the precipitation rate in the previous period. The
flows of Kizinga and Mzinga rivers are highest in the wet season (the highest discharge rates can go
up to 15 m*/s for the Kizinga River and 7 m>®/s for the Mzinga River). In the dry season, base-line
flows of 1 m*/s in the Kizinga River and even lower in the Mzinga River were observed (Van Camp et
al., 2013).

The Kizinga river that drains the urbanised and industrialised (small to medium scale) areas of Keko,
Chang’ombe, Kurasini and Temeke (approximately 400,000 inhabitants; NBS, 2003) is suspected to
carry a variety of wastes and discharges originating from agricultural, industrial as well as residential
sources (Taylor et al., 2002). There is also a textile factory built within the Kizinga river catchment.
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The Mzinga river, on the other hand, drains the rural and non-industrialised areas of Vijibweni,
Tuangoma and Mji Mwema with a population of around 90,000 (NBS, 2003). Due to rapid growth of
settlements along the Mzinga creek resulting from increased human population, the river is
suspected to carry agricultural and residential wastes and discharges presumed to be emptied into
the creek. The estuary further receives inputs from the Dar es Salaam harbour which is located near
the mouth of the estuary during diurnal tides (up to 5 m amplitude) and from the Mtoni solid waste
dumping site located in between the two rivers.

Therefore, the Mtoni estuary is highly impacted (PUMPSEA, 2007) by discharges of various origin:
(1) the Kizinga and Mzinga rivers draining the mangrove forest (Kruitwagen et al.,, 2008), (2) the
wastewater drainage systems from industrial and residential areas (of a population of around
500,000 inhabitants; NBS, 2003), (3) charcoal and wood burning, (4) mangrove harvesting for
residential places, (5) salt mining, (6) tourism and (7) agriculture (Taylor et al., 2002).

1.5 OBJECTIVES

The general aim of this study was to describe and evaluate the past and current status of mangrove
ecosystem and to predict the future status by relating it to changing human activities in the coastal
areas and its environment in Tanzania. Specifically, the study aimed at (1) establishing the role of
anthropogenic influence on the contribution of organic carbon and nitrogen in the mangrove
sediments via the use of stable carbon and nitrogen isotopes as proxies and (2) describing the
current sources and fate of key pollutants (metals, PCDD/Fs and PCBs,) in the Tanzanian mangrove
ecosystems in response to anthropogenic and natural changes. Moreover, the study intended to
determine and compare the variability in the distribution of potential micro-pollutants in the
mangrove sediments of Tanzanian coast.

1.6 THESIS LAYOUT

The thesis has been organised into 5 chapters. Chapter One gives an outline of the mangrove
sediment as a biogeochemical environment as well as source and sink of micro-pollutants. It also
describes the organic matter composition as well as the use of carbon and nitrogen stable isotopes
and nitrogen to carbon ratio as environmental tracers in sediment. The chapter also gives a
description of sources, fate and effects of metals and dioxins and dioxin-like PCBs in mangrove
sediments. It lastly gives the current situation of mangrove ecosystem in coastal Tanzania.

The next 3 chapters, 2 to 4, which form the main body of the thesis, address the specific objectives
of the work. Each of the chapters gives a brief introduction, descriptions of the sampling
procedures, methods on sample preparation and instrumental analysis, quality control and quality
assurance measures, description of the results, detailed discussion and conclusion. Chapter Two
reports the carbon and nitrogen dynamics as indicated by total organic carbon (TOC), total nitrogen
(TN), stable carbon (6™C) and stable nitrogen (& N) and carbon to nitrogen (C/N) ratio in the
estuarine mangrove sediments. Temporal and spatial variations of the geochemical parameters
were also determined. Sources of the sedimentary organic matter were identified by a combination
of geochemical parameters. Carbon content contribution of the terrestrial component was
guantitatively estimated using the stable carbon and nitrogen isotopes assuming the marine
environment is a two end-member system.

Chapter Three reports the distribution of two major, two minor and seven trace elements as
qguantified in coastal sediments using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS).
Correlation coefficients of the different metals were estimated to determine the factors controlling
their behaviour in tropical mangrove sediment. Enrichment factors and principal component
analysis (PCA) using varimax rotated factor analysis were also determined to identify the sources of
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metals in a way to assess the anthropogenic activities as indicators of human induced
environmental change.

Chapter Four reports the levels of dioxins, furans and dioxin-like PCBs as detected by chemically
activated luciferase gene expression, CALUX assay, a reporter gene bioassay that uses genetically
modified cells. The induction by these chemicals in the recombinant cells was measured as
luminescence and compared to the response of a 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
standard. The amount of pollutants in any given sample was converted to a bioanalytical equivalent
(BEQ) and expressed in pg TCDD BEQ/ g sediment. The current levels of these micro-pollutants in
different samples enabled to identify the possible pollution sources and determine any historical
input and extent of biological exposure in the mangrove ecosystem.

The last chapter, Chapter Five, gives the general conclusion and recommendations of the study
based on the findings obtained in the chapters two to four.
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CHAPTER TWO: CARBON AND NITROGEN DYNAMICS IN TROPICAL ESTUARINE MANGROVE
SEDIMENTS OF MTONI, TANZANIA

2.1 Abstract

Elemental (C, N) and isotopic (62°C, 6©°N) signatures were used as proxies to identify changes in the
proportions of sedimentary organic matter (OM) in a tropical estuarine environment, Mtoni estuary
and tributaries Mzinga and Kizinga (Tanzania). Sandy particles dominated the mangrove sediments,
with less than 6% of OM in the estuary and less than 9% in the tributaries. Similarities in the levels of
total organic carbon (TOC) and total nitrogen (TN) with depth were observed at all the stations,
indicating a homogenous, well-mixed top 9 cm sediment layer. A clear gradient of TOC and TN levels
from the Kizinga and Mzinga riverine stations to the estuarine mouth is observed with highest content
in the most upstream stations and a decrease towards the mouth of the estuary. No clear seasonal
trend of C/N ratio was observed except in the confluence region where the ratios were higher in wet
than dry season. Wet season 6N values were lower while §”C values were higher compared to dry
season values for all the stations. Mzinga §"°N values were higher than Kizinga values in both seasons
while the opposite was observed for §C, but all were lower than confluence values. Correlations of
the geochemical parameters for both wet and dry seasons suggest that OM in Mtoni sediments
originated mainly from sources that are >N enriched (3.48%o to 8.14%s.) and >C depleted (-30.8%o to -
23.9%) and are linked to OM degradation processes. Combined elemental and isotopic signatures
indicated that wet season values were dominated by sewage material while dry season values were
dominated by mangrove material. Quantitative estimation of the contribution of the identified
sources indicated that sewage material contributed between 60% and 90% of the sedimentary
organic matter in the wet season and mangrove litter between 44% and 98% in the dry season.

2.2 Introduction

Mangrove ecosystems represent a crucial component of global ocean carbon and nutrient budgets
due to their ability to accumulate and store a large amount of OM (Bouillon et al., 2007). OM from
various sources is trapped in the mangrove sediments followed by subsequent mixing by
bioturbation and decomposition (Kristensen et al., 2008). The amount and origin of OM will depend
on biological (consumption, removal), chemical (oxidation) and physical (tidal dynamics) factors
acting on mangrove sediments (Bouillon et al., 2003). Mangrove areas constitute natural reactors
which can be affected by heterogeneous processes due to local changes in the sedimentation,
biogeochemical processes as well as salinity conditions (Marchand et al., 2008).

Studies to evaluate OM sources in marine sediments can be done using carbon and nitrogen ratio
(C/N) and stable isotopic signatures (e.g. Hu et al., 2006; Marchand et al., 2008). The use of C/N
ratios relies on the ability to distinguish and account for the varying sources of OM being transported
into a mixed water system such as mangrove estuaries. Fluctuations in this ratio over time may
represent a shift in the sediment source at a given location (Woods, 2009). Specifically, C/N ratio has
been used to describe the fractional contributions of different end-members contributing to the OM
of a given area. For example, a low C/N ratio (< 10) indicates the dominance of OM originating from
N-rich planktonic processes or bacterial immobilisation of N during degradation (Meyers, 1994;
Cifuentes et al., 1996; Ruttenberg & Gonii, 1997; LG and Zhai, 2006). On the other hand, the presence
of high percentages of terrestrial OM is usually reflected by a higher ratio of C/N (>10) in sediments
(Thornton and McManus, 1994; Ruttenberg and Gofi, 1997; Andrew et al., 1998; Ll and Zhai, 2006;
Fernandes et al., 2011).

Stable isotopes of carbon (6°C) and nitrogen (6°N) have been used to determine the presence

and/or effects of biogeochemical processes in marine environment (Salazar-Hermoso, 2007). OM
isotopic composition generally can be used to, among others, identify sources (Hu et al.,2006),
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inferring processes (e.g., heterotrophic nitrification), estimate rates (Sulzman, 2007) and pathways of
OM on the basis of the fact that: (i) consumers fractionate carbon and nitrogen in predictable ways
that allow for the identification of the isotopic composition of their food resource(s), and (ii) relative
contributions of some primary producers can be differentiated by the variation in the carbon isotopic
composition of plants as a result of differences in growth environment and the biochemical pathways
of photosynthesis and biosynthesis (Cloern et al., 2002; Machiwa, 2010). In aquatic systems, the
conservative nature of stable isotopes and the physical mixing of end-member sources determine the
isotopic distributions of OM (Cifuentes et al., 1988) and allow discrimination of terrestrial and marine
sources (Middelburg and Nieuwenhuize, 1998; Ramaswamy et al., 2008). For example, low 8§2C
values in particulate OM are indicative of selective degradation of OM and dominance of the
terrestrially derived carbon (Ogrinc et al., 2005; LG and Zhai, 2006). High 8C values indicate
dominance of macrophytes or autogenic sources (Li and Zhai, 2006). High 6N values in sediment
are an indication of bacterial metabolism or high degree of nutrient utilisation in highly ranked
trophic level organisms. Low 6°N values indicate productivity and nutrient level variations that occur
due to selective degradation and fractionation during degradation of OM (Ogrinc et al., 2005).

Mangrove environments in coastal areas have been increasingly impacted by various socio-
economic activities but also natural events such as tsunamis. Anthropogenic and natural changes
including industrial and domestic pollution (oil spills, effluents, wastes and global climate change)
are among the unprecedented threats. This is aggravated by the unsustainable use of coastal
resources as well as pressures from the growing coastal population. In Tanzania, significant
amounts of different agricultural, domestic and industrial wastes are discharged into streams, rivers
and estuaries. With continuously high influx of anthropogenic products from increased urban
population, industrial and agricultural activities, sewage input and burning of solid wastes, the
magnitude of the problem cannot be underestimated. Hence, the type, nature and content of OM
in Tanzanian mangrove sediments and their C/N, §°C and 6N may reveal different signatures.
Knowing that mangrove sediments can provide an important record of anthropogenic impact on the
coastal environments, we used carbon and nitrogen composition, C and N stable isotopes and C/N
ratios, to determine the sources and to assess the contribution of anthropogenic factors to the
deposition and accumulation of OM in the Mtoni estuary.

2.3 Methodology

2.3.1 Study area

The Mtoni estuary (Figure 2.1) is located at approximately 3 km south of Dar es Salaam (Tanzania)
and is fed by 2 rivers: Kizinga and Mzinga. The creeks have mangrove trees such as Avicennia marina,
Bruguiera gymnorrhiza, Ceriops tagal, Rhizophora mucronata and Sonneratia alba species growing
on both sides (Mlay et al., unpublished).

The fresh water input from both rivers is low. An average base-line flow rate of 1 m>/s is observed in
Kizinga River with an increase up to 8m>/s in the rainy season while the water-flow rate in the Mzinga
River is unstable and lower than in the Kizinga River (Van Camp et al., 2013). Hence, the effect of the
river discharges on the hydrodynamics of the Mtoni estuary is very limited. The seven sampling
stations (E1 to E7) are located in the mixing zone and their salinities vary from almost fresh to
brackish water with somewhat higher salinities in the dry season (Mangion, 2011). Downstream this
mixing zone (stations F5 to F8) the water becomes rapidly sea water while the stations F1 to F4 more
upstream have fresh water. This estuarine mixing zone was selected because it integrates influences
of natural and anthropogenic sources in the riverine and marine systems.
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Figure 2.1: Sampling points in the Mtoni estuary, Dar es Salaam: E1 and E2 in the Kizinga River,
E3-E5 at the confluence and E6 and E7 in the Mzinga River. Stations F1-F2 in the
Kizinga River, F3-F4 in the Mzinga River, F5-F6 at the Navy shore and F7-F8 at
Kigamboni Seaway are additional sampling points. White line delimits the estuarine
mixing zone

The Mtoni estuary is highly impacted (PUMPSEA, 2007) by discharges of various origin: (1) the
Kizinga and Mzinga rivers draining the mangrove forest (Kruitwagen et al., 2008), (2) the
wastewater drainage systems from industrial and residential areas (of a population of around
500,000 inhabitants; NBS, 2003), (3) charcoal burning, (4) mangrove harvesting for residential
places, (5) salt mining, (6) tourism and (7) agriculture (Taylor et al., 2002).

The Kizinga river that drains the urbanised areas of Keko, Chang’ombe, Kurasini and Temeke
(approximately 400,000 inhabitants; NBS, 2003) is suspected to carry a variety of wastes and
discharges originating from agricultural, industrial as well as residential sources (Taylor et al., 2002).
The Mzinga river, on the other hand, drains the rural areas of Vijibweni, Tuangoma and Mji Mwema
with a population of around 90,000 (NBS, 2003). Due to rapid growth of settlements along the
Mzinga creek resulting from increased human population, the river is suspected to carry agricultural
and residential wastes and discharges presumed to be emptied into the creek. The estuary further
receives inputs from the Dar es Salaam harbour which is located near the mouth of the estuary
during diurnal tides (up to 5 m amplitude) and from the Mtoni solid waste dumping site located in
between the two rivers.
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2.3.2 Sampling

Sampling of sediments was conducted in the mangrove forests during low tides at Kizinga and
Mzinga creeks of the Mtoni estuary (Figure 2.1). Two sampling campaigns were conducted in the
estuarine mixing zone (salinity between 20 and 35, Mangion 2011): one during the wet season (19" -
20" January 2011) and a second during the dry season (15" - 16™ August 2011). December and
January have an average precipitation rate of 194 and 89 mm, respectively, while these rates in July
and August are much lower with 48 and 47 mm respectively. River flows in the Dar-es-Salaam area
are mainly controlled by the precipitation rate in the previous period. The flows of Kizinga and
Mzinga rivers are highest in the wet season (the highest discharge rates can go up to 15 m>/s for the
Kizinga river and 7 m>/s for the Mzinga river) while in the dry season base-line flows of 1 m*/s in the
Kizinga river and even lower in the Mzinga river were observed (Van Camp et al., 2013). The impact
of both rivers on the pollutant levels in the mixing zone can thus best be estimated by sampling in
that zone at high (wet season) and at low (dry season) river flow and comparison of the results.
Samples were collected from exactly the same locations (seven sampling stations) identified with a
hand-held global positioning system (GPS). Two stations were located in the Kizinga River (E1 and
E2), two in the Mzinga River (E6 and E7) and three at the confluence of the two rivers (E3, E4 and E5).

In addition, in order to better understand the sedimentary organic matter characteristics in the
studied estuarine mixing zone (samples E1-E7), a complementary sampling campaign was organised
during dry season (2™ October 2012) at 3 locations that are representative of organic matter sources
end-members: one site in the freshwaters of Kizinga River (positions F1-F2), one site in the
freshwaters of Mzinga River (positions F3-F4) and two sites in the downstream marine waters close
to (positions F5-F6) and at the mouth of the estuary (positions F7-F8) (Figure 2.1). All those samples
were taken from two sub-sites within a distance of 20 m, except in the Kizinga River. Sample F2 in the
Kizinga River was taken at the junction of the river and a textile wastewater stream, while F1 was
taken 200 m upstream of F2 very close to unauthorised human settlements.

Sediment sampling during the sampling campaigns was done as described by EPA, (2001) using a
hand corer (30 cm height, 6 cm internal diameter). The corer was gently pushed in the mangrove
sediments, closed at its upper end with a lid and smoothly removed by twisting and pulling. The
sediments were then pushed out of the corer tube using a piston and sectioned into three segments
corresponding to depth intervals of 0-3, 3-6 and 6-9 cm. Sampling of complementary sediment
samples, however, was done by scooping the top 5 cm sediment layer. All sediment samples were
packed in prior labelled and zipped polyethylene bags, stored in iceboxes and later frozen to -20 °C.
Sediment samples were then air-transported while frozen to the Laboratory of the Department of
Analytical and Environmental Chemistry, Vrije Universiteit Brussel (VUB) in Belgium and lyophilised
(Leybold Heraus Lyophiliser) prior to the various geochemical analyses (grain size, total and organic
carbon and nitrogen, stable carbon and nitrogen isotopes).

2.3.3 Determination of Grain Size Distribution

The grain size distribution was determined at 3 stations with low (station E7), medium (station E2)
and high OM content (station E1) in their sediments. Approximately 10 g lyophilised and
homogenised sediment sample was prepared by removing salts, OM and carbonates using hydrogen
peroxide and hydrochloric acid, respectively. A stable suspension was obtained after rinsing and
adding a peptising agent (5 ml). The coarse fraction (above 75 um) was separated by wet sieving on a
75 um sieve, then dried at 105°C, and finally dry sieved. The grain-size distribution of the fine
fractions 2-75 pm and <2 um was obtained using the Sedigraph 5100 coupled to a Mastertech 51.
The precision for 10 consecutive measurements on aliquots of the same sample was around 1% for
every grain-size fraction.
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2.3.4 Elemental Carbon and Nitrogen Analyses

Total Carbon (TC) analysis was carried out on untreated sediments placed in tin capsules (about 10
mg) while Total Organic Carbon (TOC) and Total Nitrogen (TN = organic nitrogen) analysis was
carried out on pre-treated sediments (acidification of the sample with 5% HCI to remove inorganic
components) placed in silver capsules (about 12 mg). For the analyses, a Flash 1112 EA Elemental
Analyser (Thermo Finnigan) including a High Temperature Oxidative Combustion (HTOC) unit at
1020°C, was used. The Total Inorganic Carbon (TIC) content was determined from the difference
between TC and TOC measurements. Calcium carbonate, CaCO; content was calculated as a weight
percentage from the TIC content assuming that all assessed inorganic carbon was present as CaCOs;.
A conversion factor of 8.33 was derived from the ratio of molecular mass of carbonate (100.1) to
carbon (12.0).

2.3.5 Stable Carbon and Nitrogen Isotopic Analyses

The stable organic carbon isotope (6"3C) composition of the sedimentary OM was determined by
analysis of pre-treated sediment sub-samples with 5% HCl, while its stable nitrogen (6°N)
composition was determined on untreated sub-samples. The analyses were accomplished by using a
Flash 1112 EA Elemental Analyser (Thermo Finnigan) interfaced to a Delta Plus IRMS (Thermo
Electron) operating in a continuous-flow mode according to Bouillon et al., (2004). Data quality
control was checked by running a reference standard after every seven samples. The instrument was
calibrated using a series of certified standards in quantities (0.1, 0.2, 0.5, 0.7 and 1.0 mg) from the
International Atomic Energy Agency (IAEA CH6, sucrose, and IAEA N1, ammonium sulphate), that
gave a linear range of isotope ratio values for C and N corresponding to responses within the ranges
of the isotopic carbon and nitrogen values in the samples. All stable isotopic data were reported in
standard delta notation where the §°C and "N are given as the per mil deviation from the C and N-
isotope composition of the standards, respectively Pee Dee Belemnite for **C, and atmospheric N, for
15NZ

R
6(y)=( :"‘p'e —1]x103 (1)

std

where y = 3C or N, and R = the ratio of the heavy isotope (**C or *>N) over the light isotope
(*2C or *N). Analytical precision ranged from 0.2 to 2.7%o. for carbon and from 0.4 to 2.7%o
for nitrogen.

2.4 Results

2.4.1 Grain size Distribution

Sandy particles dominated the mangrove sediments in the study area, with sand (> 75 um)
contributing for more than 60% of the weight. Highest TOC content in sediments was associated with
the finest ganulometry. TOC content correlated well with the finest grain size fraction (< 2 um, r? =
0.92) as well as with the mud+silt fraction (< 75 pm, r* = 0.82). It is well-known that fine muddy
sediments show higher TOC contents (Baeyens et al., 1991). In the Mtoni estuary, the high sand
proportion implies that the mangrove sediments favour abiotic processes such as enhanced diffusion
of oxygen in the sediment allowing faster oxidation of organic matter (Holmer, 2003; Davies &
Tawari, 2010).
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2.4.2 Organic Carbon and Nitrogen in Mtoni estuary Sediments

Only small vertical variations in the C and N contents and the **C and N isotopic compositions of the
sediments at the seven sampling stations were observed, indicating a well-mixed top 9 cm layer of
these sediments. Results in this paper are therefore further presented as depth averaged values for
the top 9 cm of the sediments.

2.4.2.1 TOC and TN levels and C/N ratios

The TOC content in the estuarine mixing zone varied between 0.58 + 0.07% and 5.66 + 2.83% during
wet season and between 0.65 + 0.18% and 3.63 + 0.65% during dry season. The percentage levels of
TIC and hence CaCO; content were generally very low and can thus be ignored. TN content in the
estuarine mixing zone varied from 0.06 + 0.03% to 0.28 + 0.03% in wet season and from 0.09 +
0.02% to 0.22 + 0.1% during the dry season.

There were no obvious seasonal trends in TOC and TN levels between wet and dry seasons (Figures
2.2a and b). For TOC, higher levels were observed during wet season in the Mzinga stations E6 (3.36
+0.97%) and E7 (5.66% * 2.83%) as well as at two of the stations located at the confluence E3 (3.31
+ 0.67%) and E5 (1.56 + 0.75%). In contrast, Kizinga station E1 (1.95 + 0.24%), had higher
percentages of TOC during dry season while the other stations (E2 in the Kizinga and E4 in the
confluence region) showed no seasonal difference. For TN, both Kizinga stations as well as one of
the stations in the mixing region (E4) had lower TN in wet season compared to dry season, while the
opposite was observed at two of the stations in the mixing zone and one of the stations in Mzinga
River.

There was, however, a clear difference between the TOC and TN levels observed in the sediments
of the two rivers (stations E1 and E2 versus stations E6 and E7). Percentage levels of TOC and TN
were lower in Kizinga stations (TOC: 0.58 + 0.07% - 1.95 * 0.24%; TN: 0.06 = 0.03 — 0.15 * 0.05%)
than in Mzinga stations (TOC: 1.58 + 0.2% - 5.66 £+ 2.83%; TN: 0.13 + 0.01 — 0.28 + 0.03%) as well as
in the confluence region (TOC: 0.65 + 0.18% — 3.31 + 0.67%; TN: 0.09 + 0.02% - 0.2 + 0.02%). So,
higher values of both TOC and TN were generally restricted to the more rural Mzinga River
compared to the other studied stations.

The TOC levels measured in the study area were similar to TOC observed in Indian mangrove
sediments (0.6% - 31.7%, Bouillon et al., 2003), Upper Boony estuary, Nigeria (0 — 5.4%, Davies and
Tawari, 2010) and Mzinga mangrove sediment (2.2 — 4.8%, Mangion, 2011). However, the values
were slightly higher than those observed (0 — 4%) by Barros et al., (2010) in estuarine environments.
Observed TN contents in Mtoni estuary were comparable to values observed in similar estuarine
environments (0 — 0.35%, Barros et al.,, 2010) and in similar mangrove sediments (0.17 — 0.32%,
Mangion, 2011).
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Figure 2.2:  Seasonal variations of percentage TOC (a), percentage TN ( b) and C/N ratio (c) in the Mtoni estuary
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The C/N ratios in the sediments of the estuarine mixing zone varied from 9.4 + 3.8 to 16.6 + 2.8
during the wet season and from 7.0 + 1.7 to 16.9 * 4.6 during the dry season (Figure 2.2c). There was
no clear seasonal trend of the C/N ratio in the upstream river samples. However, in the confluence
region, C/N ratios were clearly higher (13.0 + 6.7 — 16.9 + 3.0) in the wet season than in the dry
season (7.4 + 0.4 — 8.5 * 1.8). In addition, higher levels of C/N ratios were observed in more rural
Mzinga stations (11.8 + 1.9 — 19.7 + 8.6) compared to more urban Kizinga (7.7 £+ 0.7 — 14.5 + 7.7),
while the confluence stations displayed an intermediate range (7.3 +1.8 — 16.9 * 3). The values in the
Mzinga stations were similar to those observed (14.8 — 17.1) in an earlier study in that area
(Mangion, 2011). The C/N observed in Mtoni sediments were higher (5.5 — 11.3) than those observed
in the Gulf of Thailand by Meksumpum et al., (2005), but within the range of values (7.0 — 27.3)
observed by Bouillon et al., (2003) for similar mangrove sediments.

2.4.2.2 Isotopic composition

Carbon isotopic values in the sediments of the estuarine mixing zone varied between -27 + 0.05%.
and -23.9 + 0.8%o0 (mean -25.1 + 0.1%o) during wet season and between -30.8 + 4.7%. and -26.3 +
1.0%o0 (mean -28.4 + 0.2%o) during dry season (Figure 2.3a). Carbon isotopic values were similar to
the values (-29.4%o to -20.6%o) observed in Indian magrove sediments (Bouillon et al., 2003) and
Mzinga creek (-26.1 + 0.3%o to -24.9 + 0.1%0, Mangion, 2011). However, the carbon isotopic values
were depleted compared to values (-21.3%o to -14%o.) observed in Dar es Salaam coast by Muzuka
(2001) and slightly more enriched than the values (-35%. to -26%o.) for sewage derived OM in creeks
of Southern California (Ramirez-Alvarez et al., 2007). Moreover, the observed values were generally
lower (cf -21.6%o0 to -20.2%0) than those observed in the Gulf of Thailand by Meksumpum et al.
(2005).

Nitrogen isotopic values in the estuarine mixing zone ranged from 3.5 * 3.0%o to 6.6 + 0.44%o (mean
4.9 £ 1.2%o) during wet season and from 5.8 £ 0.2%o to 8.1 + 1.4%o0 (mean 6.7 + 0.7%o) during the
dry season (Figure 2.3b). The observed values were similar to values (1.7%o to 8.2%o.) observed in
coastal Dar es Salam by Muzuka, (2001), comparable to values (0.1 — 9%.) observed in sewage
environments (Thornton and McManus, 1994; Maksymowska et al., 2000; Ramirez-Alvarez et al.,
2007) and more or less similar to values (5.4 — 6.4%o) observed by Barros et al., (2010) in a similar
tropical estuary. However, the values were slightly lower than the values (7.4 + 0.5%o to 8.0 £ 0.1%o)
observed in Mtoni sediments by Mangion (2011) and slightly higher than the range of 0 — 5%o
observed at the Southwestern coast of Thailand by Kuramoto and Minagawa, (2001) and in the Gulf
of Thailand by Meksumpum et al., (2005).

A seasonal variation in both C and N isotopic composition of Mtoni estuarine sediments was noticed.
8"N values were lower while §"C values were higher in the wet season compared to dry season
values for all the stations (Figure 2.3a-b). In addition, the isotopic composition also varied spatially
during the wet season. The Mzinga 8N values were higher than Kizinga values in both seasons while
the opposite was observed for the §C, but all were lower than confluence values. Enhanced
variability was observed in 8N values during the wet season and in 6°C during the dry season
(Figures 2.3a-b).

2.4.3 Correlations between geochemical parameters

2.4.3.1 TCand TOC

In order to estimate the contribution of inorganic carbon to the TC level, TC was plotted against TOC
(Figure 2.4a) giving r’ = 0.98. From that plot an intercept of 0.16 + 0.1% was deduced indicating that

there is only a very low contribution of inorganic carbon to the sediment carbon reservoir. More than
99% of the carbon pool in the sediments is organic carbon.
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Figure 2.4: Correlation between %TC and %TOC (a) and %TN and %TOC (b) in the Mtoni
sediments. Blue dots indicate wet season and red dots indicate dry season

2.4.3.2 TN and TOC

The correlation between TOC and TN was used for checking the organic nature of the nitrogen in
the sediments. The intercept of that regression (Figure 2.4b) describes the level of diagenetic
adsorption of inorganic components (Ku et al., 2007). Indeed, part of the measured TN could be
inorganic nutrients (NH," or NO;™ ) associated with the clay minerals. A good correlation between
TOC and TN contents in sediments (slope = 0.04, intercept = 0.07, r* = 0.89, Figure 2.4b) was
observed which is an indication that they originate from the same OM source (Fernandes et al.,
2011). The intercept of this plot (0.07 + 0.01 %TN), indicates that there could be low amounts of
nitrates and ammonium trapped in clay minerals. The slope of 0.04 + 0.004 is indicative of the
presence of OM originating from terrigenous plant vegetation (C/N range 20 — 50), but the
contribution of the intercept strongly influences the final C/N ratio: at 1% TOC the C/N ratio
amounts to 10 but at 5% TOC that ratio increases to about 20.

2.5 Spatial variation of geochemical parameters in the Mtoni estuary

In order to determine the spatial variation of the geochemical parameters in the estuary, data from
all campaigns were used. A clear gradient from the Kizinga upstream stations (F1 and F2) to the
estuarine mouth (F7 and F8) in the dry season was observed for the TOC and TN levels (Figure 2.5)
with highest content in the most upstream stations and a decrease towards the mouth of the
estuary. This is also the case for §"°N values in the Mzinga River and for 8"C values inthe Kizinga
River (Figure 2.6).
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2.6 Discussion

2.6.1 Use of C/N ratio and isotopic compositions in sediments to trace the origin of OM in Mtoni
estuary

2.6.1.1. General

Human impacted estuarine sediments may contain a large variety of terrigenous, marine and
sewage material as potential contributors of OM (Liu et al., 2006). Contribution of each of the
sources can be strongly influenced by processes such as transport (tidal enhanced resuspension-
settling events, river floods) as well as phytoplanktonic and terrestrial productivities and sewage
discharges (Meyers, 1997). In addition, benthic re-mineralisation processes consume sedimentary
OM. Both the initial source (Liu et al., 2006; Fernandes et al., 2011) and re-mineralisation processes
(Meyers, 1994; Thornton and McManus, 1994) influence the OM characteristics such as the C/N
ratio and the isotopic compositions.

The OM content in Mtoni sediments displayed little vertical variation which demonstrates the
presence of a rather thick (9 cm) homogenous layer of surface sediments. In addition, there is a
significant linear correlation between TN and TOC (Figure 2.4b) contents whatever the season or
the sampling station, which is an indication of an invariable source that supplies OM to the
estuarine sediments. Moreover, a study performed by Mangion (2011) in Mtoni showed that the
carbon isotopic signature of suspended OM was very similar to the one of sediments (6"3C = -25 to -
29 %o). All these findings suggest that the OM pool in the Mtoni estuarine sediments is submitted to
hydrodynamic regimes that constantly homogenises the sediment’s upper layer and thus the OM
pool (Ruttenberg and Goii, 1997). In these conditions, benthic OM in the sediment’s surface layer is
probably permanently mixed with a small amount of freshly deposited OM, while re-mineralisation
processes are probably not important enough or anymore (perhaps most of the OM is refractory
material) to significantly modify the OM characteristics. Observed variations in the C/N ratios and
isotopic composition of the sedimentary OM in this system can thus reasonably be used to trace the
origin of OM sources.

2.6.1.2. C/N ratios

OM in estuarine sediments can be originating from different sources which can be traced if their
C/N ratios are discriminatory (Graham et al., 2001; Perdue and Koprivnjak 2007; Yu et al., 2010;
Fernandes et al, 2011). Changes in C/N ratios usually indicate variations in proportions of OM from
different origins (Fernandes et al., 2011). Mtoni sedimentary OM may originate mainly from three
main sources: marine OM (basically phytoplankton), mangrove terrestrial plants and urban sewage.
Typical ranges of C/N ratios of the three sources are 6.67 for marine OM (= Redfield ratio), 7.7 to 20
for OM from urban sewage (Maksymowska et al., 2000) and 23 to 70 for the organic material from
the Mtoni mangrove trees (Mangion, 2011).
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Figure 2.7:  C/N ratios in Sediments describing the different organic matter sources

All the observed C/N ratios in Mtoni estuary (Figure 2.7) were in the range of sewage OM, above
the Redfield ratio, and below the typical range of mangrove tree material. This wide range of C/N
ratios (7.3 — 19.7) is an indication that the estuarine sediments incorporate OM from various
sources but probably dominated by a sewage source.

However, C/N ratios alone are not a strong reliable indicator of OM sources in sediments because
the system can receive OM originating from different sources and each of them can have similar or
different C/N ratios. In addition, transport and selective degradation of OM components can alter
the original ratios (Meyers, 1997; Ruttenberg and Gofii, 1997; Middlelburg and Herman, 2007).
Hence, it is imperative to use the C/N ratios together with other source indicators such as data from
stable C and N isotopes to restrain the uncertainties on the origin of the OM (Ruttenberg and Gofii,
1997). Elemental and isotopic values for different OM sources are described in literature (Thornton
and McManus, 1994; Andrews et al.,, 1998; Maksymowska et al., 2000; McSween et al., 2003;
Rogers, 2003;, Middlelburg and Nieuwenhuize, 2004; Rwamaswamy et al., 2008; Barros et al., 2010;
Sampaio et al., 2010; Ogrinc et al., 2010; Mangion, 2011).

2.6.2 Combined N, *C and C/N ratios

Nitrogen isotopic signatures in sedimentary OM can distinguish various OM sources based on the
different signatures between terrestrial and aquatic sources. The §°N values of the OM content in
an estuarine system turns around 8.6%. for plankton and 0.4%. for terrigenous C; plants (Meyers,
1997). However, in Mtoni estuary which is a peri-urban ecosystem receiving nitrogen rich sewage
waters, Mangion (2011) reported a 6"°N enrichment of the mangrove biomass with §°N values
ranging between 7 and 12 %o (Table 2.1).
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Table 2.1: The *C and N ranges for various sources in the Mtoni estuary

Location B3¢ (%o) BN (%o) Reference
Mtoni  mangrove sediment -27.0to0-23.9 3.5t06.5 This study

(wet)

Mtoni mangrove sediment (dry) -30.8t0 -28.0 6.3t06.5 This study
Mzinga mangrove sediment -24.5 8.1 Mangion, (2011)
Mtoni mangrove forest -28.9t0-27.3 7.2t011.7 Mangion, (2011)
Sewage -22.6 5.0 Mangion, (2011)

Mangion (2011) further observed that §°N levels in suspended particulate matter and mangrove
sedimentary OM correlated well, indicating that they originate from the same enriched source.
There is thus no such agreement with the marine planktonic signature, which excludes it from being
a significant source of OM in the estuary. The C/N ratios indicate that sedimentary OM from Mtoni
estuary is more comparable to sewage than to mangrove materials. However, the §°N and §C
values in the OM of the sediments during the dry season are very similar to those of mangrove
plants (Table 2.1).

The elevated 6N values in Mtoni estuary are attributed to **N-rich ammonia volatilisation
occurring during degradation of wastewater and consequent oxidation of the remaining substrate
producing an enriched 6"°N nitrate (Mangion, 2011). Highly enriched 8N values in OM reflect the
result of specific biogeochemical processes where the light nitrogen compound leaves the system
leaving the heavier one behind (Ramirez-Alvarez et al., 2007). This scenario is common in sewage
discharges where the 8§"°N-depleted urea and ammonia are lost through volatilisation leaving an
enriched 6°N waste water (Sampaio et al., 2010). The 8N signatures observed in the Mtoni
estuarine sediments reflect the cumulative effects of sewage and effluent inputs carried by the
rivers into the estuary as observed in other ecosystems (Prasad and Ramanathan, 2008).

Seasonal fluctuations observed for the carbon and nitrogen isotopic ratios can be attributed to
slightly different sources between seasons. These are well illustrated by the combined 6"°N to §*C
signatures (Figure 2.8) where wet season values were closer to sewage sources as compared to dry
season values which were closer to mangrove tree values. The observed variations in sources could
be accounted by the reduced flow of sewer related materials into the rivers during the dry season,
thus increasing the OM contribution from mangrove trees. However, the overlap of §°C and §"°N
values in both seasons is evident, indicative of the presence of an invariably supply of OM from a
source with depleted §C and enriched 8N values similar to the observations made by Mangion,
(2011) in mangrove sediments impacted with sewage discharges.
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Figure 2.8: Relationship between 6C and 8N in Mtoni sediment and different organic

matter sources. Values for the sewage and mangrove end-members were adopted
from Mangion, (2011).

The C/N ratios and the plots of §°C versus 6N clearly identify sewage as a dominant source of OM
in the sediments of the Mtoni estuary. Using the signatures, it is evident that spatial patterns and
seasonal variability of OM in the Mtoni mangrove sediments are due to changes in the supply of
sewage discharges from human and industrial areas. In the wet season, sewage supply is high, while
in the dry season, OM from mangrove litter becomes evident due to a decreased riverine volume:
this is illustrated by the corresponding §°C and 8N values (Figure 2.8) whereas the C/N ratios
suggests rather sewage supply as the main source.

2.6.3 Use of isotopic ratios in sediments to estimate the contribution of different end-members
to the total OM

It has been clearly displayed that despite the contribution from other sources, OM in the Mtoni
estuary originates mainly from mangrove as well as sewage materials. In order to estimate the
relative proportions of these sources to the total estuarine OM, a traditional isotopic mass balance
mixing equation using a two end-member model similar to Schlunz et al., (1999) and Barros et al.,
(2010), has been applied. The proportions of sewage and mangrove sources were estimated using
the equations:

fSew X 613Csew +fman X 613Cman = 613C5a (2)
fsew X 615Nsew +fman X 615Nman = 615NSa (3)
fsew +fman =1 (4)

47



where 8%C and 6N are the stable C and N isotopic composition of the sewage (sew),
mangrove (ma,) and sample OM (,); and f are the fractional contributions of sewage and
mangrove OM to the estuarine OM.

Median values obtained from this study and from literature were used for determining the
fractional contributions of the different end-members to the total OM in the estuary. The 6°C and
8N values employed in calculating the OM contributions are given in Table 2.2.

Table 2.2: Isotopic C and N median values observed in Mtoni and for the identified end-
members in the estuary

Organic matter source 8C value 6"N value
Sewage organic matter -23.5 3.9
Mtoni wet season -25.2 4.7
Mtoni dry season -27.8 6.6
Mangrove trees -28.1 9.5

The model results clearly indicate the dominance of sewage supply in the wet season and that of
mangrove supply in the dry season as previously observed from the §°N and §**C plot (Figure 2.8).
The sewage OM contribution in Mtoni sediments ranged from 60 to 90% in wet season and from 2
to 56% in dry season. The remaining OM contribution is from mangrove origin.

2.7 Conclusion

Carbon and nitrogen elements and their stable isotopic ratios in sediments of a tropical estuary,
Mtoni estuary, have been determined. Findings have indicated that mangrove sediments from
Mtoni estuary are impacted by sewage OM. This sewage OM has a high N value due to N rich
ammonia volatilisation occurring during degradation of wastewater. Correlations between
sedimentary §"C and 8N and quantitative estimation of the contribution of each of the various
sources have identified two major OM sources for the Mtoni estuary: sewage material in the wet
season and mangrove litter during the dry season. Seasonal changes in sewage discharges could
explain the spatial patterns and seasonal variability of OM in the Mtoni estuarine sediments.
However, when using C/N ratios combined with either §°C or §°N values only suggest one major
source: sewage input. The variability in C/N ratios is, however, less unambiguously related to OM
source than it is for the isotope ratios of N and C.
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CHAPTER THREE: METAL DISTRIBUTION AND ENRICHMENT IN MANGROVE SEDIMENTS PROFILES
AS INDICATORS OF HUMAN INDUCED ENVIRONMENTAL CHANGE IN COASTAL TANZANIA

3.1 Abstract

Mangrove sediment samples from the Kizinga and Mzinga creeks of Mtoni estuary were analysed for
Al, Fe, Mn, Cr Ni, Cu, Zn, As, Sr, Cd and Pb. Metal levels in the sediment layers (0-3, 3-6, and 6-9 cm)
showed no distinct depth gradient and there was no variation between wet and dry season. A clear
gradient from the upstream of the Kizinga River to the estuarine mouth was observed for all metals,
except As. This was also observed from upstream of the Mzinga River to the estuarine mouth.
Pearson correlation matrix and Principal component analysis (PCA) indicated that the selected
compounds could be separated in 3 groups: (1) Cu, Ni, Cr, Min, Zn, Al, Fe, As, Pb; (2) Cd and TOC, which
were strongly anti-correlated and (3) Sr. Enrichment factors (EF) indicated that Sr was most probably
derived from natural origin, while other metals in the Mtoni estuary originated from anthropogenic
activities. The levels of anthropogenic metals are indicative of human induced environmental change
and have repercussions on the future status of the estuary and of the coastal area of Tanzania as a
whole.

3.2 Introduction

Many environmental pollutants emanating from various sources make the marine system as their
final destination. Metal contaminants may enter the coastal environment via a number of pathways
such as natural processes (including erosion of ore-bearing rocks, wind-blown dust, volcanic activity
and forest fires) and processes derived from anthropogenic activities (Dell’Anno et al, 2003;
Chatterjee et al., 2007; Tranchina et al., 2008). Anthropogenic sources in mangrove ecosystems arise
from industrial effluents and wastes, urban runoff, sewage treatment plants, runoff from agricultural
field and domestic garbage dumps (MacFarlane and Bruchett, 1999, 2001; Dell’Anno et al., 2003;
Chatterjee et al., 2007; Tranchina et al., 2008). In addition, discarded automobiles and dumping
metallic substances have been the common anthropogenic inputs of metals in the marine ecosystem
(Kamau, 2002; Praveena et al., 2010). As metals cannot be chemically degraded and are not subject
to biological degradation, they are essentially a permanent addition to the aquatic environment. As a
consequence, they get accumulated locally (MacFarlane and Bruchett, 2001; Defew et al., 2005)
and/or transported over long distances (Marchand et al., 2006).

Sediments are good transporters of metals, and their partition with the surrounding waters is
reflected in the quality of an aquatic system (Rainbow, 1995). Metal content found in the sediments
may reflect a diversified set of natural processes, from erosion to early diagenesis and anthropogenic
influences (Alaoui et al., 2010). Mangrove sediments act as a source (MacFarlane and Burchet, 2000)
as well as a long-term store for metals in the marine environment (Spencer and MaclLeod, 2002)
particularly when triggered by changes in abiotic conditions such as pH, redox potential and salinity.
Mangrove sediments, despite having high organic matter content, sulphides and a large proportion
of fine particles, have low pH as well as anaerobic and reducing conditions (Tam and Yao, 1998; Tam
and Wong, 2000; Janaki-Raman et al., 2007; De Wolf and Rashid, 2008). In mangroves, metals are
therefore trapped by the sediments as a result of sedimentation of suspended particles and physical,
chemical and biological processes associated with the surfaces of the sediment organic and inorganic
matter (Zheng et al., 1997).

Geochemical characteristics of the sediments can be used to infer the sources of pollution
(Chatterjee et al., 2007). Being arsenals for metals, sediments are thus recorders of contamination
changes owing to their large adsorption abilities (Nobi et al., 2010). In this way, profiles of pollutant
species in sediment cores can be used as pollution records owing to their stability within the
sedimentary column and their ability to leave fingerprints in sediments due to lack of or insignificant
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post-depositional mobility (Chatterjee et al., 2007). Elevated levels of metals recorded in mangrove
sediments thus can reflect the long-term pollution caused by human activities (Tam and Wong,
2000).

Increasing human population along the coastal areas has resulted in anthropogenic perturbations of
estuarine and coastal environments adjacent to urban areas (Tam and Wong, 2000). In addition,
industrialisation, urbanisation and their associated socio-economic activities have contributed to the
input of significant amounts of pollutants into the marine environment, directly affecting the coastal
systems. Many mangrove ecosystems are close to urban development areas and are obviously
impacted by urban and industrial run-off, which contain the metals in the dissolved or particulate
form (Defew et al., 2005; Kamaruzzaman et al., 2008). Direct and indirect disposal of waste products
into rivers and estuaries has led to a significant increase in pollutant contamination (Alaoui et al.,
2010). Metals from incoming tidal water and fresh water sources are rapidly removed from the water
body and deposited into mangrove sediments. As a result, the contemporary metal concentrations in
coastal marine environment have increased (Tranchina et al., 2008) and mangrove ecosystems are
under serious human contamination (Tam and Wong, 2000).

At present, the anthropogenic contribution of the metals into the marine environment in Tanzania
and the impacts of metal contamination in the coastal ecosystems are alarming. There has been an
increase in industrial activities, street garages, dumping of metallic substances and urban
agriculture in valleys and near rivers that drain their water into mangrove ecosystems (Ak'habuhaya
and Lodenius, 1988; Machiwa, 1992, 2000; De Wolf et al., 2001; Taylor et al., 2002; Mremi and
Machiwa, 2003). Therefore, this study was intended to gain knowledge of the current levels of
metal contaminants in mangrove sediments in order to understand the extent of metal pollution,
fate and bioavailability of the metals in mangrove ecosystems. The knowledge on the concentration
and distribution of metals in the sediments will help to identify the source of pollution in the marine
systems of Tanzanian coast.

3.3 Methodology

3.3.1 Study area

The Mtoni estuary (Figure 3.1) is located at approximately 3 km south of Dar es Salaam (Tanzania)
and is fed by 2 rivers: Kizinga and Mzinga. The creeks have mangrove trees such as Avicennia marina,
Bruguiera gymnorrhiza, Ceriops tagal, Rhizophora mucronata and Sonneratia alba species growing
on both sides (Mlay et al., unpublished).

The fresh water input from both rivers is low. An average base-line flow rate of 1 m*/s is observed in
Kizinga River with an increase up to 8 m®/s in the rainy season while the water-flow rate in the
Mzinga River is unstable and lower than in Kizinga River (Van Camp et al., 2013). Hence, the effect of
the river discharges on the hydrodynamics of the Mtoni estuary is very limited. The seven sampling
stations (E1 to E7) are located in the mixing zone and their salinities vary from almost fresh to
brackish water with somewhat higher salinities in the dry season (Mangion, 2011). Downstream this
mixing zone (stations F5 to F8) the water becomes rapidly seawater while the stations F1 to F4 more
upstream have fresh water. This estuarine mixing zone was selected because it integrates influences
of natural and anthropogenic sources in the riverine and marine systems.
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Figure 3.1: Sampling points in the Mtoni estuary, Dar es Salaam: E1 and E2 in the Kizinga River,
E3-E5 at the confluence and E6 and E7 in the Mzinga River. Stations F1-F2 in the
Kizinga River, F3-F4 in the Mzinga River, F5-F6 at the Navy shore and F7-F8 at
Kigamboni Seaway are additional sampling points. White line delimits the estuarine
mixing zone. The solid waste dumping site and textile factory are also indicated.

The Mtoni estuary is highly impacted (PUMPSEA, 2007) by discharges of various origin: (1) the
Kizinga and Mzinga rivers draining the mangrove forest (Kruitwagen et al., 2008), (2) the
wastewater drainage systems from industrial and residential areas (of a population of around
500,000 inhabitants; NBS, 2003), (3) charcoal burning, (4) mangrove harvesting for residential
places, (5) salt mining, (6) tourism and (7) agriculture (Taylor et al., 2002).

The Kizinga river that drains the urbanised areas of Keko, Chang’ombe, Kurasini and Temeke
(approximately 400,000 inhabitants; NBS, 2003) is suspected to carry a variety of wastes and
discharges originating from agricultural, industrial as well as residential sources (Taylor et al., 2002).
The Mzinga river, on the other hand, drains the rural areas of Vijibweni, Tuangoma and Mji Mwema
with a population of around 90,000 (NBS, 2003). Due to rapid growth of settlements along the
Mzinga creek resulting from increased human population, the river is suspected to carry agricultural
and residential wastes and discharges presumed to be emptied into the creek. The estuary further
receives inputs from the Dar es Salaam harbour which is located near the mouth of the estuary
during diurnal tides (up to 5 m amplitude) and from the Mtoni solid waste dumping site located in
between the two rivers.
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3.3.2 Sampling

Sampling of sediments was conducted in the mangrove forests during low tides at Kizinga and
Mzinga creeks (Figure 1) of the Mtoni estuary. Two sampling campaigns were conducted: one during
the wet season (19" - 20™ January 2011) and a second during the dry season (15" - 16™ August
2011). December and January have an average precipitation rate of 194 and 89 mm, respectively,
while these rates in July and August are much lower with 48 and 47 mm, respectively. River flows in
the Dar es Salaam area are mainly controlled by the precipitation rate in the previous period. The
flows of Kizinga and Mzinga rivers are highest in the wet season (the highest discharge rates can go
up to 15 m®/s for the Kizinga river and 7 m*/s for the Mzinga river) while in the dry season, base-line
flows of 1 m*/s in the Kizinga river and even lower in the Mzinga river were observed (Van Camp et
al., 2013). The impact of both rivers on the pollutant levels in the mixing zone can thus best be
estimated by sampling in that zone at high (wet season) and at low (dry season) river flow and
comparison of the results.

Samples were collected from exactly the same locations during both campaigns. Seven sampling
stations were identified using a hand-held global positioning system (GPS): two in the Kizinga River
(E1 and E2), two in the Mzinga River (E6 and E7) and three at the confluence of the two rivers (E3,
E4 and E5).

From the results obtained during the wet and dry seasons in the mixing zone of the estuary, it
appeared that the most upstream sampling station E1 in Kizinga River showed higher
concentrations for several metals (Cr, Mn, Fe, Ni, Zn and Pb) than the stations in and close to
Mzinga River. It was thus interesting to investigate metal levels more upstream in both rivers. In
addition, the salinity gradient in the mixing zone is also small and real marine water samples were
not included in the previous samplings. We were thus not able to appreciate any evolution of the
metal levels from the estuarine mixing zone towards the marine environment. Therefore, an
additional sampling campaign was organised at 3 end-members in October 2012: (1) one site in the
Kizinga River (fresh water stations F1-F2) much more upstream than stations E1 and E2, (2) one site
in Mzinga River (fresh water stations F3-F4) slightly more upstream than stations E6 and E7, but
these latter stations were yet compared to the stations F1 and F2 in Kizinga river, much more
upstream) and (3) two sites in the marine area, close to and at the mouth of the estuary
(respectively marine water stations F5-F6 and F7-F8) (Figure 1).

All those samples were taken from two sub-sites within a distance of 20 m, except in the Kizinga
River. The first subsample was taken at the junction of the river and the textile wastewater stream
(Figure 1) and the second was taken 200 m upstream of the River very close to unauthorised human
settlements.

Sediment sampling was done as described by EPA (United States Environmental Protection Agency
[US EPA], 2001) using a hand corer (30 cm height, 6 cm internal diameter). The corer was gently
pushed in the mangrove sediments, closed at its upper end with a lid and smoothly removed by
twisting and pulling. The sediments were then pushed out of the corer tube using a piston and
sectioned into three segments corresponding to depth intervals of 0-3, 3-6 and 6-9 cm. All sediment
samples were packed in prior labelled and zipped polyethylene bags, stored in iceboxes and later
frozen to -20°C. Sediment samples were then air-transported (frozen) to the Laboratory of the
Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel (VUB) in Belgium
for metal analyses.
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3.3.3 Particle Size and Total Organic Carbon (TOC) Analyses

Effect of grain size on metal concentration in marine sediments is worth noting (Rubio et al., 2000;
Trachina et al., 2008) and can be used to compare metal concentrations in sediment profiles from
different areas. The grain size distribution was determined at 3 stations with low (station E7),
medium (station E2) and high OM content (station E1) in their sediments. Approximately 10 g
lyophilised and homogenised sediment sample was prepared by removing salts, OM and carbonates
using hydrogen peroxide and hydrochloric acid, respectively. A stable suspension was obtained after
rinsing and adding a peptising agent (5 mL). The coarse fraction (>75 um) was separated by wet
sieving on a 75 um sieve, then dried at 105°C, and finally dry sieved. The grain-size distribution of the
fine fractions 2-75 um and <2 um was obtained using the Sedigraph 5100 coupled to a Mastertech
51. The precision for 10 consecutive measurements on aliquots of the same sample was around 1%
for every grain-size fraction. The amount of Total Organic Carbon (TOC) in the Mtoni sediment
samples was determined using a Flash 1112 EA Elemental Analyser (Thermo Finnigan, Italy) by
analysing a known weighed amount (about 12 mg) of sediment sub-samples placed in silver capsules
and pre-treated by acidification with HCI (5% w/w). TOC was expressed as percentage of the total
sediment weight (Mangion, 2011).

3.3.4 Determination of Metal Concentrations in Marine Sediments

The lyophilised sediment samples were pulverised (Fritsch Pulverisette) before chemical treatment.
For metal analyses, the samples were then digested using a CEM Microwave Accelerated Reaction
System (MARS 5®, Matthews, USA). Prior to digestion, the MARS® HP 500 digestion vessels were
cleaned with 2% alkaline Extran (Merck), rinsed with Milli-Q water and then cleaned with Emsure®
nitric acid (65% w/w, Merck KGaA, Darmstadt, Germany). For each sample, an analytical amount
(0.20 g) of Mtoni sediment was put into the digestion vessel together with Suprapur® Hydrochloric
acid, (6 mL, 30% w/w, Merck KGaA, Darmstadt, Germany) and distilled suprapur® nitric acid (2 mL,
65% w/w). The digestion was programmed to operate at 150°C temperature, 1200 W (100%)
maximum power, 15 min ramp time, 200 psi maximum pressure and 15 min hold time. After cooling,
Milli-Q water (40 mL) was added to each vessel and the contents were transferred into polyethylene
bottles ready for analysis. For each digestion session, blank samples as well as certified reference
material (LGC 6139, River Clay sediment, Middlesex, UK) were included and treated in the same
manner as the samples.

Metal analysis was carried out using a High Resolution Inductively Coupled Plasma Mass
Spectrometer (HR-ICP-MS, Thermo Finnigan Element IlI). Samples were diluted tenfold prior to ICP-
MS analysis. Metal standard solutions were prepared by serial dilution of stock standard solutions:
ICM 224 (Radion), SM 70 (Radion) and XllI (Merck). Prepared working standards (1, 5, 10 and 20
ppm) were run before and after every batch of 10 samples. Eleven metals: two major elements (Al,
Fe), two minor elements (Mn, Cr) and seven trace elements (Ni, Cu, Zn, As, Sr, Cd, Pb,) were
analysed in each mangrove sediment sample. Indium at a concentration of 1 pg/L was used as the
internal standard. The accuracy and precision of the analytical procedures were assessed using the
certified reference material (LGC 6139) and procedural blanks.

3.3.5 Statistical Analysis

Statistical methods including Student’s t-test, Pearson correlation and Principal Component Analysis
(PCA) were used to evaluate differences and elucidate the relationships between various parameters.
In all statistical analyses, a value of p < 0.05 was set as a criterion to indicate significant differences in
the study. Student’s t-test was performed using Microsoft spreadsheet whereas Pearson correlation
and PCA were performed using Predictive Analytic Software (PASW, v. 16.0) for Windows.
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3.4 Results

3.4.1 Quality Control and Quality Assurance

All results were blank corrected using respective mean blank reading prior to determination of the
concentrations. Precision of ICP-MS analysis was better than 5% RSD. The percentage recoveries of
the measured metals based on the mean values compared to the certified reference materials are
given in Table 3.2. Metal recoveries ranged from 93.1% to 117.6% when the certified values for
extractable metals were used, while the recoveries ranged from 72.1% to 129.9% when certified
values for total metals were used. The results indicated good agreement between the certified and
the obtained values except for Cr and Pb when total metal values are used and for Sr because it
lacks a certified value for extractable metals.

Table 3.1: Certified and observed mean concentrations (mg/kg) of metals in the certified
reference material (LGC 6139) and the percentage recovery (n = 7)

Extractable metals Total metals

Certified Obtained Percent Certified Obtained Percent
Metal value value Recovery value value Recovery
Al - 43,300 - 57,000 43,300 76.0
Cr 80.00 94.1 117.6 126.00 94.1 74.7
Mn - 1,170 - 1,100 1,170 106.4
Fe - 41,600 - 32,000 41,600 129.9
Ni 38.00 42.1 110.8 44.00 42.1 95.7
Cu 92.00 93.7 101.8 96.00 93.7 97.6
Zn 513.0 580 113.1 530.0 580 109.4
As 27.00 30.7 113.7 - 30.7 -
Sr - 111 - 154.00 111 72.1
Cd 2.30 2.36 102.6 - 2.36 -
Pb 160.00 149 93.1 176.00 149 84.7

3.4.2 General features of the Mtoni sediments

Sandy particles dominated the mangrove sediments in the study area, with sand (> 75 um)
contributing for more than 60% of the weight. The correlation between TOC and the fine grain size
fraction (% < 2 um) was good (r* = 0.92) this was still the case (r* = 0.82) between TOC and the
mud+silt fraction (% < 75 um). It is well-known that muddy sediments having a high TOC content but
also a high amount of fine grain size fraction (< 2 um), accumulate by far higher amounts of
pollutants than sandy sediments (Baeyens et al., 1991). This means that TOC values can eventually be
used to normalise the pollutant concentrations in the sediment versus the mud fraction (% < 2 um).
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3.4.3 Metal Contents in the Mtoni mixing zone

Very limited vertical variations in the metal contents of the sediments layers (0-3 cm, 3-6 cm, 6-9cm)
at the seven sampling stations in the mixing zone (E1 to E7) were observed, indicating a well-mixed
top 9 cm layer of the sediments in the estuary. This was also the case when the metal contents were
normalised to TOC. No significant difference between wet and dry seasons was observed (p > 0.05)
for all metal concentrations measured in the Mtoni estuarine sediments (E1 to E7). The levels
presented further in this paper are therefore average values (over depth and season) of the metal
contents in the sediment cores. The spatial distributions of the metals in the estuarine mixing zone
are given in Table 3.2 and compared to literature data of trace metals in sediments in tropical
estuaries or coastal seas (Table 3.3) especially those related to Mtoni estuary or other Tanzanian
coastal waters (Mtanga and Machiwa, 2007; Kruitwagen et al., 2008; Rumisha et al., 2012).

Higher Al content was observed in Kizinga station E1, confluence stations E4 and Mzinga stations E6
and E7. Lowest Al content was observed at confluence station E5. The ranges of Al values observed in
the mixing zone were within the range of the values observed by Kruitwagen et al., (2008) and higher
than those observed by Rumisha et al., (2012).

The Cr content in the Kizinga station E1 was higher than in other stations in the mixing zone. A more
or less similar Cr content was also observed in Mzinga stations E6 and E7 and in confluence stations
E3 and E4. Lower Cr content was observed in Kizinga station E2 and confluence station E5. The Cr
ranges in the Mtoni were within the range of values observed by Kruitwagen et al., (2008), similar to
values observed by Mtanga and Machiwa, (2007) and higher than those observed by Rumisha et al.,
(2012) in a similar tropical environment (Table 3.3).

The contents of Fe and Mn showed a similar trend. Fe and Mn contents in the mixing zone were
higher in the Kizinga station E1 than in both Mzinga stations E6 and E7. However, all were higher
than the values in the Kizinga station E2 and in stations at the confluence region. Fe ranges observed
in this study were within the range of values observed by Kruitwagen et al., (2008) and higher than
those observed by Rumisha et al., (2012). On the other hand, Mn ranges in the Mtoni were higher
than those observed by Rumisha et al., (2012).

Ni, Cu and Pb contents in the sediments of the Mtoni mixing zone displayed a similar trend. Their
levels were high in Kizinga station E1 and confluence stations E3 and E4. Whereas lower values of the
metals were observed at confluence station E5, more or less similar values were observed in Kizinga
station E2 and Mzinga stations E6 and E7. The ranges of Ni and Cu values observed in this estuary
were within the range of values observed by Kruitwagen et al., (2008), but higher than those
observed by Rumisha et al., (2012). Cu ranges in this study were also similar to the values observed
by Mtanga and Machiwa, (2007). Pb ranges in this study were lower than those observed by
Kruitwagen et al., (2008) and Mtanga and Machiwa, (2007), but higher than the values observed by
Rumisha et al., (2012).

Lower values of Zn were observed in the Mzinga stations E6 and E7 than in Kizinga stations E1 and E2
and confluence stations E3 and E4. Confluence station E5 had the lowest values of all. The Zn values
in the sediments of the Mtoni mixing zone were higher than the values observed by Rumisha et al,,
(2012), similar to those observed by Mtanga and Machiwa, (2007) and lower than those observed by
Kruitwagen et al., (2008) (Table 3.3).
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Table 3.2:

Metal Concentrations (Mean * Standard deviation (SD) and range) in the Mtoni estuarine mixing zone (n = 6)
Metals  concentration Kizinga stations Confluence Mzinga stations
(ng/g dw) E1 E2 E3 E4 E5 E6 E7
Al Mean = SD (x103) 48421 24.1+7.7 29+16 38118 18.216.6 40.318.6 39.1+6.8
Range (x103) 27.6-84.5 13.3-36.8 16.0-59.0 18.4-61.3 9.8-27.9 30.7-56.1 27.7-47.4
Cr Mean + SD 35+15 18.945.2 26113 29+12 14.2+4.5 28.314.7 27.945.2
Range 21.5-60.2 11.0-26.8 14.3-50.8 14.8-48.0 8.3-20.8 22.6-35.2 19.3-32.8
Mn Mean = SD 133157 68+15 80126 76122 56116 10144 118+23
Range 70.0-231.6 41.3-82.2 44.4-113.0 48.2-108.4 35.8-75.0 56.9-164.1 101.1-162.0
Fe Mean = SD (x103) 25111 13.2+3.3 16.7t7.6 18.7£7.3 9.51£3.0 20.314.3 20.6%£3.9
Range (x103) 15.2-45.0 8.0-17.2 9.4-31.0 9.7-30.7 15.5-22.5 15.5-26.7 14.2-24.6
Ni Mean = SD 14.7+7.2 6.212.0 8.414.1 9.7+4.4 4.611.6 10.0+£2.0 9.71£2.6
Range 7.7-24.4 3.7-9.2 5.0-16.6 4.6-17.0 2.4-7.2 7.4-13.0 5.8-12.2
Cu Mean = SD 14.8+4.5 9.3+2.3 13.2+6.5 13.9+5.0 6.3%1.7 8.8+2.9 10.2+2.3
Range 11.2-21.5 6.0-10.2 7.9-25.9 6.8-21.9 3.7-8.9 6.9-14.7 6.2-12.6
Zn Mean = SD 77123 49.517.6 64132 61126 24.817.0 44+12 42.9+8.0
Range 57.3-110.1 42.9-64.0 36.2-125.9 31.9-104.8 16.3-34.7 28.8-66.0 32.6-52.2
As Mean = SD 6.613.7 2.9+1.0 3.0£1.0 3.5£1.0 1.8+0.8 7.311.7 5.4+1.4
Range 3.8-13.5 1.8-4.6 1.8-4.4 2.2-5.2 0.8-3.1 4.8-8.6 3.6-6.9
Sr Mean = SD 28+12 18.9+5.4 30+10 33.849.3 21.0+7.3 28.7+8.0 21.4+5.4
Range 18.2-49.9 11.3-27.6 16.1-42.6 21.4-45.9 12.5-30.1 23.28-44.2 15.3-28.7
Cd Mean = SD 0.12+0.02 0.07£0.02 0.12+0.05 0.12+0.04 0.061£0.01 0.06%0.03 0.05+0.02
Range 0.09-0.14 0.06-0.07 0.07-0.21 0.08-0.17 0.04-0.08 0.04-0.12 0.03-0.07
Pb Mean = SD 13.2+4.0 8.0£2.2 11.1+4.6 11.4+4.8 6.912.1 10.4+2.1 8.81£1.8
Range 10.6-19.8 5.1-11.8 7.0-19.6 5.6-18.2 4.1-9.6 8.7-14.3 6.1-10.6

na= not analysed

60



Table 3.3: Comparative Account of Metal Concentrations (ug/g dw) in Different Tropical Marine Sedimentary Environments
Study site Mtoni estuary, Mtoni Mzinga Mtoni Msimbazi, S. Buloh & Hugli Cross River, SanJose Andaman
Tanzania® estuary, Creek, estuary, Tanzania S. Bongsu, estuary, Nigeria lagoon, Islands, India
Tanzania® Tanzania Tanzania Singapore India Puerto Rico
Al 18,200-48,000  3,300-31,900 - 5,430-61,900 461 - - - - 2,938-4,384
Cr 14.2-35 5.4-460 22.7 14.4-6,240 1.0 16.6-32.1 12.1-84.4 19.2-37.9 - 12.7-20.4
Mn 56-133 32.3-680 - - 23 - 228.3-716.9 - - 29.2-134.4
Fe 9,500-25,200 1,600-23,510 - 8,070-59,100 461 - - 598.2-993.2  1,600-4,600 2,638-4,888
Ni 4.6-14.7 1.8-80 - 7.9-156 0.35 7.44-11.7 6.86-52.5 14.2-35.0 - 7.04-12.0
Cu 6.3-14.8 1.5-400 9.50 3.70-4,050 0.3 7.06-32.0 4.30-45.3 23.0-36.2 29.0-211.0 80.9-87.9
Zn 24.8-77 6.9-260 35.1 43.9-2,450 4.0 51.2-120.2 22.96-205.0 126.4-212.3 266.0-530.0 12.2-23.0
As 1.8-7.3 2.6-8.1 - - 0.2 - - - 4.50-24.0 -
Sr 18.9-34 na - - - - - - - -
Cd 0.05-0.10 0.03-0.37 1.05 0.9-28.1 0.01 0.18-0.27 0.20-4.70 0.8-1.52
Pb 6.9-13.2 2.0-32.8 14.6 47.2-385 0.8 12.3-31.0 n.d-44.5 7.2-26.6 16.0-548.0 3.90-5.40
Reference  This Study This Study Mtanga &  Kruitwagenet Rumishaet Cuong et Chatterjee Essienetal., Acevedo- Nobi et al.,
Machiwa, al., (2008) al, (2012) al., (2005) etal, (2009) Figueroaet 2010
(2007) (2007) al., (2006)

® Values from brackish sediment stations E1 to E7 in the mixing zone; ®Values from stations F1 to F8 (freshwater to marine sediments); n.d = not detected
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A high As content was observed in Kizinga station E1 and Mzinga stations E6 and E7. While lower As
values were observed in the confluence station E5, a more or less similar As content was observed in
Kizinga station E2 as well as in confluence stations E3 and E4. The range of As observed in the Mtoni
estuary was higher than the values observed by Rumisha et al., (2012).

Sr concentrations in the Mtoni mixing zone were all more or less similar. A slightly higher Sr content
was observed in confluence station E4 and slightly lower Sr was observed in Kizinga station E2. No
data for comparison were available in literature from similar tropical marine environments. The Cd
content in the mixing zone was higher in Kizinga station E1 as well as in the confluence stations E3
and E4. In other stations, Cd content was more or less similar. The range of Cd values in the estuary
was lower than that observed by Kruitwagen et al., (2008) and Mtanga and Machiwa, (2007), but
higher than the values observed by Rumisha et al., (2012) in a similar marine environment.

3.4.4 Metal Contents in additional samples

Metal levels in the additional sampling stations (F1 — F8) are given in Table 3.4. Contents of Cr, Mn,
Fe, Ni and Cu were the highest at the riverine station F2 while Zn, Cd and Pb were the highest at
riverine station F1 of the Kizinga River. As levels were the highest at stations F3 and F4 in the Mzinga
River. A clear gradient from the Kizinga upstream station F1 to the estuarine mouth (F8) is observed
in the dry season for all metals except As (Table 3.4). This is also the case for most metals from the
Mzinga station F3 to the estuarine mouth (F8) when omitting station F4.

Table 3.4: Metal Concentrations (ug/g dw) in the additional samples from the Mtoni estuary
Riverine Marine
Metals Kizinga Mzinga Navy shore Kigamboni
F1 F2 F3 F4 F5 F6 F7 F8
Al 31,900 7,900 13,900 4,800 17,600 12,700 3,300 4,120
Cr 27.8 460 16.4 6.20 15.5 11.6 5.38 6.46
Mn 384 680 375 163 80.4 80.4 323 35.4
Fe 12,400 23,510 9,200 3,600 7,400 5,600 1,600 2,000
Ni 12.1 80 7.23 2.70 5.78 4.33 1.84 2.10
Cu 16.4 400 9.35 491 9.12 7.20 1.52 1.94
Zn 260 149 56.4 24.6 38.2 314 6.9 8.5
As 3.34 2.61 7.70 8.13 3.39 3.78 4.96 5.10
Sr na na na na na na na na
cd 0.37 0.24 0.10 0.03 0.09 0.07 0.04 0.05
Pb 32.8 10.3 10.4 4.76 10.6 7.92 2.18 2.01

na= not analysed
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The ranges of metal concentrations in the additional samples (end members) were, except for Al and
Fe, all higher than those in the mixing zone samples. They are now more comparable to those of
Kruitwagen et al., (2008) except that the highest levels of Cr, Cu, Cd, Zn and Pb which were still about
10 times higher than our values. However, those high values were all related to one station close to
our F2 station in the Kizinga River, which is also the most contaminated in our study. The observed
values were all higher than the values reported by Rumisha et al. (2012), but the latter studied the
coastal area of Tanzania which is a system that is still more diluted than most of the downstream
sample stations in our study.

3.4.5 Pearson Correlations and Principal Component Analysis (PCA)

In order to determine the relationship between metals and TOC, Pearson linear correlation matrix
was generated and the coefficients are presented in Table 4. PCA was also employed and the results
are presented in Table 5. A principal component (PC) is considered significant when its eigenvalue is
greater than 1. The measured metal values and %TOC were used as variables (total 12), with the
concentrations of the metals in the different sampling stations during wet and dry seasons as objects
(total 42). The application of PCA indicated that the 12 variables can be represented by 3 new PCs
that accounted for 88.82% of the total variance in the original data sets (Table 5). A two dimensional
score plot is given in Figure 3.2. Combining the results of the Pearson correlation matrix (Table 4) and
the PCA (Table 5), we can repartition the compounds in 3 groups: (1) Al, Cr, Mn, Fe, Cu, Ni, Zn, As and
Pb form PC1, explaining 57.85% of the variance. Correlation coefficients between those elements
range from 0.531 to 0.989; (2) Cd and TOC form PC2, explaining 19.5% of the variance. They are
strongly anti-correlated with correlation coefficient equal to -0.51; and (3) Sr, which does not
correlate with any element forms PC3 explaining 11.47% of the variance.

Variables (PC1and PC 2: 77.35%)
after Varimax rotation

Cd
0.75
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I Cr |
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Figure 3.2: A two-dimensional score plot of metals in relation to %TOC in the Mtoni estuary



Table 3.5:

Pearson Correlation Coefficients for metals and sediment properties in the Mtoni estuary (n = 42)*

Al Cr Mn Fe Ni Cu Zn As Sr cd Pb %T0C
Al 1 0.979 0.816 0.977 0.906 0.764 0.743 0.845 0.579 0.372 0.852 -0.003
Cr 1 0.809 0.989 0.925 0.844 0.819 0.828 0.623 0.469 0.890 -0.047
Mn 1 0.821 0.731 0.649 0.643 0.779 0.465 0.193 0.661 0.064
Fe 1 0.926 0.808 0.786 0.879 0.571 0.417 0.863 0.009
Ni 1 0.793 0.777 0.801 0.548 0.467 0.847 0.019
Cu 1 0.893 0.531 0.567 0.734 0.877 -0.295
Zn 1 0.576 0.559 0.692 0.810 -0.285
As 1 0.486 0.145 0.622 0.202
Sr 1 0.585 0.594 -0.202
cd 1 0.680 -0.510
Pb 1 -0.220
%TOC 1

* Significant values at a = 0.05 (two-tailed) are in bold.
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Table 3.6: Rotated Principal Component (PC) Matrix

Principal Components (88.82%)

PC1(57.85%)° PC2(19.50%) PC3(11.47%)

Al 0.883 0.009 0.051
Cr 0.875 0.035 0.067
Mn 0.760 0.001 0.012
Fe 0.917 0.014 0.047
Ni 0.814 0.025 0.051
Cu 0.548 0.320 0.038
Zn 0.538 0.280 0.036
As 0.768 0.043 0.056
Sr 0.139 0.052 0.773
Cd 0.060 0.633 0.183
Pb 0.623 0.198 0.064
TOC 0.017 0.731 0.000

® The percentage in brackets indicates the explained contribution of principal component to the total variance
after varimax normalisation.

3.4.6 Enrichment Factors (EF) of the Metals

Enrichment Factors for the metals in the Mtoni estuary were determined relative to the crustal
abundance. EF values were normalised to Al (Figure 3.2) after correction of Al levels in the Mtoni
sediments based on the percentage recovery. EF values were interpreted as follows: EF <1 = no
enrichment, 1<EF<3 = minor enrichment, 3<EF<5 = moderate enrichment, 5<EF<10 = moderate
severe enrichment, 10<EF<25 = severe enrichment, 25<EF<50 = very severe enrichment and EF<50 =
extremely severe enrichment (Acevedo-Figueroa, 2006; Chen et al., 2007; Essien et al., 2009).

The EF values in the mixing zone samples indicated no enrichment for all metals except Zn, As, Cd
and Pb. Whereas minor enrichment (EF <3) was observed for Zn, Cd and Pb, As was enriched in all
mixing zone samples (EF values 3-6). Exceptionally high enrichments were observed in additional
samples in the riverine stations (F1 and F2 in the Kizinga River and F3 and F4 in the Mzinga River).
Kizinga station F2, for example, situated close to where wastewaters from the textile mill enters the
Kizinga River, was highly enriched with all metals (EF >4) except Sr. Arsenic (As) was also
exceptionally enriched in all the riverine as well as the marine samples (up to EF = 59 in Mzinga
station F4, Figure 3.2). Similar As enrichment in all samples was observed in the intertidal sediments
of Mbweni, Kunduchi, Msasani, Msimbazi, Mji Mwema and Geza Ulole in the Dar es Salaam coast
(Rumisha et al., 2012).
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3.5 Discussion

3.5.1 Spatial distribution of metal content in sediments

The dominance of the sand fraction in the Mtoni estuarine sediments favours abiotic processes such
as enhanced diffusion of oxygen in the sediment allowing faster oxidation of organic matter (Holmer,
2003; Davies & Tawari, 2010). As a result, there is simultaneous release of organic matter-associated
pollutants such as metals, which may reduce the metal burden in the sediments.

Sediments from the Mtoni estuary showed varying spatial distributions in metal levels. Higher metal
contents were observed in the upstream stations (F1 and F2 in the Kizinga River and F3 and F4 in
the Mzinga River) than in the marine and mixing zone samples. This clearly indicates that the main
contribution of metals in the estuary comes from the two rivers, which probably accumulate metal
pollutants from various natural and human induced processes (see further sources of metals in the
Mtoni estuary).

The depth profiles observed indicate that the estuarine sediments are rather fairly well-mixed and
the gradient well smoothed out, making the profiles more or less uniform. The sediment mixing
caused by tidal currents in the inter-tidal areas (up to 5m) ensures uniform vertical metal patterns
and the high salinity (up to <35; Mangion, 2011) may facilitate metal diffusion in the sediments as
previously observed by Li et al., (2000). As a result, relatively low variation of metal levels with depth
has been observed. Perhaps, a depth of 9-cm is not sufficient enough to observe any difference in
the depth profiles. It will be interesting in the future to study the pollutant profiles in the deeper
layers.

3.5.2 Sources of metals in the Mtoni estuarine sediments
3.5.2.1 PCA and Correlation coefficient

In aquatic sediments, the metal distribution is governed by many factors and processes: (1) the
nature of the sediment (clay/sand/salt fractions, nature and amount of OM), (2) physical processes
(mixing, advection, and diffusion), (3) redox processes, and (4) anthropogenic sources. However, it is
not always necessary to have all that information to understand the metal distribution in the
sediment. Based on the PCA loading and correlation coefficient results, we will try to explain some
features observed in the Mtoni estuary sediments as follows:

Principal Component 1: Cu, Ni, Cr, Mn, Zn, Al, Fe, As, Pb

These correlations suggest a contamination of both ferro and non-ferro metals associated with
human activities in electronics and related works (Cu), paints and pigments (Cr), metallurgy and
metal construction works (Cr, Mn, Cu, Ni, Al, Fe, Pb), anti corrosion and batteries (Zn), paints,
pigments and as additive in petroleum fuel (Pb). Arsenic is extensively used in industry, farming and
in agriculture while small amounts are used in, amongst others, the glass and ceramics industry.
Arsenic derivates such as arsenates, arsenites as well as arsenic and arsenic acids are used as
pesticides and herbicides (De Gieter and Baeyens, 2005). Due to the proximity of the Dar es Salaam
harbour, it is likely that these metals are also transported from the harbour. Tides may facilitate the
transport of metals upstream into the estuary.

Principal Component 2: Cd and TOC
Cd is a non-ferro metal linked with an anthropogenic source. This is clearly indicated by

anthropogenic activities such as paints and pigments, metallurgy and metal constructions and wood
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preservative. Cd and TOC are negatively correlated. Despite having several anthropogenic activities in
common, the source of Cd should be different from those for Cu, Ni, Cr, Mn, Zn, Al, Fe, As, Pb.

Principal Component 3: Sr

Sr is not correlated with any other metal or TOC. Though the abundance of Sr is lower (about
0.037%) in the earth’s crust, it is one of the more abundant elements in sea water (0.0013%). The
origin of the Sr levels in the Mtoni sediments should be clearly different from the sources of all other
investigated elements.

3.5.2.2 EF data

Concentrations of metals in sediments can be important indicators of toxicological risk, especially
when they are substantially above natural levels. To be able to appreciate such increased levels, EF
values were calculated. The metal contents from the Mtoni estuary were normalised using Al.

Higher EF values in the Mtoni estuary for several metals at various sites clearly indicate the effect of
anthropogenic activities. A similar trend for Cu, Cr, Zn and Pb in the Mtoni estuary (Kruitwagen et al.,
2008) and for Cr, Zn, As, Cd and Pb in the coastal area of Dar es Salaam (Rumisha et al., 2012) was
observed. Highly enriched values in the riverine zone as compared to marine and mixing zones could
be due to anthropogenic activities in and around the river banks. Agricultural, industrial as well as
domestic activities could be the main sources of the metals particularly in this area where (i) very few
residents are connected to proper sewage systems, (ii) most industries discharge effluents without
proper treatment and (iii) most discharges are directed into the valleys, rivers and ocean implicitly or
explicitly (Rumisha et al., 2012). For example, stations F1 and F2 in the Kizinga River are close to
unauthorised human settlements. In addition, station F2 receives effluents from the nearby
households and it is close to a textile factory, which may supply industrial effluents containing
various amounts of metals. In the case of Mzinga stations F3 and F4 and estuarine stations F5 and F6,
the enrichment could be due to unauthorised human settlements where solid wastes from urban
agriculture, households and small industries are trashed away. What is observed in the marine
samples (F5-F8) could be due to cumulative effect of pollution from human and industrial sources
and the transport of metals from the two rivers. As Figure 3.2 indicates, Al and Fe have background
enrichments with no anthropogenic effects. Other analysed metals, however, exceeded the expected
natural background levels and therefore have an anthropogenic origin. Metals exceeding background
levels must be carefully monitored because they are a potential threat to the ecosystem and
humans.

3.5.3 Comparison with Sediment Quality Guidelines

To determine if the metals in the Mtoni estuary pose a threat to marine biota, the metal levels were
compared to international sediment quality guidelines because such guidelines specific for the
region are not available. Different sediment quality guidelines including the National Oceanic and
Atmospheric Administration (NOAA), Canadian Council of the Ministers of the Environment (CCME),
Ontario Ministry of Environment Screening level Guidelines and Probable effect levels (PEL) were
used for comparison and the values for 7 metals (for Al, Mn, Fe and Sr no guideline values exist) are
given in Table 3.7.
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Table 3.7: Sediment Quality Guidelines for different metals (ng/g dw)

NOAA CCME PEL ONTARIO
(TEL) (LEL)
ERL ERM
Al - - - - -
Cr 81 370 37.3 90 26
Mn - - - - -
Fe - - - - -
Ni 20.9 51.6 18 36 16
Cu 34 270 35.7 197 16
Zn 150 410 123 315 120
As 8.2 70 5.9 17 6
Sr - - - - -
cd 1.2 9.6 0.6 3.5 0.6
Pb 46.7 218 35 91.3 31

ERL = effect range low, ERM = effect range median, TEL = threshold effect level; PEL = probable effect level;
LEL lowest effect level

Comparing the metal levels in the Mtoni estuary and the different sediment quality guidelines, it
can be shown that Cr, Ni, Cu, Zn, As, Cd and Pb had lower values compared to CCME, PEL, TEL and
NOAA guideline values. Ni, Cu, Zn, Cd and Pb had lower values than the lowest effect levels (LEL)
described by the Ontario Ministry of Environment, whereas Cr and As levels were slightly higher
that the LEL at the upper range. Using the US EPA toxicity classifications, As was moderately
polluted (US EPA range for As is 3-8 ug/g), while other elements were not. This indicates that
adverse biological effects related to these metals should be rather limited. However, Kruitwagen et
al., (2006) and De Wolf and Rashid (2008) observed some adverse effects on mudskippers and
molluscs, respectively.

3.6 Conclusion

Trace metal levels in the Mtoni estuarine sediments do not show a gradient with neither depth nor
seasonal variation between the wet and the dry season. A clear decreasing concentration gradient
in downstream direction from Kizinga and Mzinga rivers towards the mouth of the estuary is
observed for almost all elements except As. Elements from anthropogenic origin can be subdivided
in 2 groups: the first consists of Cu, Ni, Cr, Mn, Zn, Al, Fe, As, Pb, Cd and Sr and the second of Cd
anti-correlated with OM.

All the elements from anthropogenic origin also show high enrichment factors. A similar trend for
Cu, Cr, Zn and Pb in the Mtoni estuary (Kruitwagen et al., 2008) and for Cr, Zn, As, Cd and Pb in the
coastal area of Dar es Salaam (Rumisha et al., 2012) was observed. Highly enriched areas in the
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riverine zones as compared to marine and mixing zones could be due to local anthropogenic
activities. Agricultural, industrial as well as domestic activities could be the main sources of the
metals particularly in this area where (i) very few residents are connected to proper sewage
systems, (ii) most industries discharge effluents without proper treatment and (iii) most discharges
are directed into the valleys, rivers and ocean implicitly or explicitly (Rumisha et al., 2012). For
example, stations F1 and F2 in the Kizinga River are close to unauthorised human settlements. In
addition, station F2 receives effluents from the nearby households and is close to a textile factory,
which could supply industrial effluents containing variable amounts of metals. Between the stations
F1 and F2 there is a small metal industry for making local cooking utensils. In the case of Mzinga
stations F3 and F4 and estuarine stations F5 and F6, the enrichment could be due to unauthorised
human settlements where solid wastes from urban agriculture, households and small industries are
trashed away.

Since highly enriched enrichment factors are observed for several toxic metals they should be
carefully monitored because they are a potential threat to the ecosystem and humans.
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CHAPTER FOUR
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CHAPTER FOUR: PCDD/F AND DIOXIN-LIKE PCB DETERMINATIONS IN MTONI ESTUARINE
SEDIMENTS (TANZANIA) USING THE CHEMICALLY ACTIVATED LUCIFERASE GENE EXPRESSION
(CALUX) BIOASSAY

4.1 Abstract

Sediments from Mtoni estuary and 2 tributaries, Tanzania, were screened for polychlorinated-p-
dibenzodioxins, polychlorinated-dibenzofurans (PCDD/Fs) and dioxin-like PCBs (dI-PCBs) using the
chemically activated luciferase gene expression (CALUX) bioassay approach. PCDD/Fs expressed as
bioanalytical equivalence (BEQ) values ranged from 5.7 + 1.4 to 39.9 + 5.8 pg BEQ/g sediment in the
wet season and from 14.1 + 2.0 to 32.8 + 4.7 pg BEQ/g sediment in the dry season, with higher levels
observed in Kizinga River and stations close to the mouth of that river. Dioxin-like PCB levels ranged
from 0.21 + 0.03 to 0.53 + 0.03 pg BEQ/g sediment in the wet season and from 0.22 + 0.03 to 0.59 +
0.04 pg BEQ/g sediment in the dry season. Higher PCDD/F and dI-PCB levels in sediments are probably
related to open burning of plastic scraps, household burning of wood or charcoal and traffic related
emissions, all of which occur in the Dar es Salaam region. The denser population and the more intense
industrial activities in the Kizinga River basin may explain the enhanced PCDD/F and dI-PCB levels
observed in the sediments of that river compared to the levels in the Mzinga River basin. A third
sampling campaign, including also stations in the downstream estuary, confirmed the enhanced
levels in the Kizinga River (maximum of 400 pg-BEQ/g) and also showed that a clear decreasing
concentration gradient in the downstream direction exists. It cannot be excluded that the levels of
these pollutants in the sediments of the Mtoni estuary pose a threat to the local biological
community.

4.2 Introduction

Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, which are collectively
referred to as PCDD/Fs, have no commercial use and occur in the environment as unintended by-
products of technological processes (Roots et al., 2004; Pan et al., 2010). PCDD/Fs can be formed
from natural combustion processes like bushfires and volcanoes (Birch et al., 2007) or during
incomplete anthropogenic combustion processes of chlorinated wastes such as, for example,
incineration of polyvinyl chloride plastics (Liu et al., 2006; Birch et al., 2007; De Wolf & Rashid,
2008; Manahan, 2008; Terauchi et al., 2009; Pan et al., 2010). Formation of dioxins in such
incinerators occurs due to the presence of both chlorine and catalytic metals (Manahan, 2008).
Industrial activities such as metallurgy and manufacture of chlorinated chemicals, like wood
preservatives and pesticides, can also produce dioxins (Miiller et al., 1999; Ryoo et al., 2005; El-Kady
et al., 2007).

Polychlorinated biphenyls (PCBs) were once produced commercially (Koistinen et al., 1997; Srogi,
2007) and used in industrial and consumer products (Liu et al., 2006; Wang et al., 2007), such as
anti-corrosion materials, coolants and insulators in heat transfer systems (Shen et al., 2009; Srogi,
2007), electronic appliances and hydraulic fluids (Shen et al., 2009; Yang et al., 2009) and as
capacitors in electrical industries (Pan et al., 2010). Common PCB sources in the environment
include the use as well as disposal of PCB-containing products and the formation of PCBs as by-
products of low temperature (less than 800 °C) waste incineration (Chi et al., 2007; Wang et al.,
2007; Pan et al., 2010). Twelve of these PCBs have a planar structure and elicit biochemical and
toxic responses similar to dioxins and are therefore known as dioxin-like PCBs or dI-PCBs (Smith &
Lopipero, 2001; Sanctorum et al., 2007a; Okay et al., 2009; Pan et al., 2010).

Both natural and anthropogenic sources can lead to increased levels of those compounds in

estuaries and coastal marine ecosystems (Kumar et al., 2008). Major anthropogenic activities are
linked to population growth, urbanisation and industrialisation (Mduller et al., 2002; Kumar et al.,
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2008;) and include effluents from municipal wastewater plants (Moon et al., 2009), combustion
processes from waste incinerators or cement manufacturing, power plants and automobile
exhausts (Zhang et al, 2010) and industrial processes like pulp bleaching and metallurgy
(Bruckmeier et al., 1997).

Mangrove sediments can act as sinks and later as sources of PCDD/F and PCB contaminants to
marine environments (Mdller et al., 1999; Guzzella et al., 2005; Chi et al., 2007; Pan et al., 2010).
Hence, sediments can be used to evaluate pollutant sources, historical trends and fate processes,
since the amounts of these compounds in sediments will reflect regional discharges (Lee et al.,
2006; Moon et al., 2009; Miiller et al., 1999). Contaminated sediments may therefore threaten the
lives of organisms in the marine environment due to the toxicity, long time persistence,
bioaccumulation and biomagnifications of these lipophilic organic micro-pollutants (Kumar et al.,
2008; Zhao et al., 2010).

Various analytical methods have been used to characterise PCDD/Fs and dioxin-like PCBs in a
sediment matrix. Gas chromatography - high resolution mass spectrometry (GC-HRMS) offers a
possibility to chemically identify and quantify individual congeners (Schecter et al., 1999; Denison et
al., 2002; Besselink et al., 2004; Denison et al., 2004) in the matrix and to enable the assessment of
risks associated with the congeners (Long et al.,, 2006). To estimate the risks from the GC-HRMS
results it is assumed that the additivity principle of a pollutant’s response or effect is valid, which
means the absence of agonistic and antagonistic interactions, and that these effects are produced
through the same mechanism of toxicity. However, it has been shown that complex mixtures of
PCDD/F and dioxin-like PCB congeners elicit synergistic and/or antagonistic interactions (Joung et
al., 2007; Schroijen et al., 2004). In addition, chemical analysis of individual congeners, particularly
in small concentrations, can be very expensive and time consuming. Presence of compounds with
aryl hydrocarbon receptor (AhR) affinity, but not commonly measured, and the absence of
toxicological equivalencies (TEQs) for several congeners further limit the use of this analytical
method ( Long et al., 2006; Joung et al., 2007). To overcome some of these drawbacks, biological
assays utilising either biomolecular techniques (e.g. immunoassays) or living materials (e.g. in vitro
chemically activated luciferase gene expression, CALUX) have been used as rapid and cost-effective
screening methods for chemicals with selective and specific biochemical interactions (Roy et al.,
2002). For example, CALUX bioassay screens for chemicals with AhR potential (Schecter et al., 1999;
Denison et al.,, 2002, 2004; Song et al., 2006) and produces a single integrated biological
equivalency (CALUX-BEQ) of the mixtures (Besselink et al., 2004). CALUX also measures a response
which is a single toxicity end-point produced by AhR active compounds that cannot be measured
and/or are below the detection level of chemoanalysis (Joung et al., 2007). The major drawback of a
bioassay such as CALUX is that there is no information about the congener pattern.

The CALUX method has been explained by various authors (Murk, 1996; Denison et al., 2002, 2004;
Croes et al., 2011; Van Langenhoveet al., 2011). It uses genetically modified cells (hepatoma cells
stably transfected with a reporter gene) which respond to chemicals that activate the cytosolar aryl
hydrocarbon receptor (AhR) by induction of luciferase (Denison et al., 2004; Croes et al., 2011). By
this method the toxicity of these pollutants such as PCDD/Fs and dI-PCBs is produced either as a
change in gene expression mediated through the AhR or by interference with other pathways (Hurst
et al., 2004). Estimation of relative potency and toxic potential can therefore be done by measuring
the activation level of AhR gene expression (United States Environmental protection Agency, 2008).
However, even when a rigorous clean-up and separation procedure of the sample extract is
performed, interferences by PCDD/Fs on dI-PCBs and vice versa or by other AhR ligands are still
possible (Sanctorum et al., 2007a).

The literature regarding CALUX analyses in marine sediments is very limited. Most of the PCDD/F
analyses in the world have been performed with GC-HRMS. In those studies where the CALUX
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technique was used, the focus was more on method development, on the comparison with the GC-
HRMS method and on the screening of food and feed (Van Overmeire et al., 2004; Hoogenboom et
al., 2006). In addition, very little data on dI-PCBs are available in literature. The fact is, PCDD/F BEQ
levels are in general by far higher than those of the dI-PCBs. Both chemo-analysis and CALUX
analysis research on marine sediments in Africa are scarcely documented (Pieters, 2007; Nieuwoudt
et al., 2009). Regarding Tanzania, only total PCBs in sediment (Machiwa, 1992) and PCDD/Fs and dI-
PCBs in free range chicken have been reported (International POPs Elimination Network [IPEN],
2005).

Although there exist no data about the presence of PCDD/Fs and dI-PCBs in the environment (more
specifically in the sediment) of Tanzania, the applications of PCBs in electrical transformers and in
other equipment is known (Loomis et al., 1997). In coastal Tanzania, there are a lot of municipal,
chemical and even hospital wastes that are discharged into the Indian Ocean after incineration and
open burning of mixed wastes (Machiwa, 1992). Wood burning is a common source of fuel as most
households use either charcoal or firewood for cooking. In many local households, there is
uncontrolled burning of plastics. Vehicle emissions are abundant due to increased traffic and
importation of old, second-hand cars (Mbuligwe & Kassenga, 1997). The current major outcry of the
country has been on the vandalism of electrical transformers (Maleko, 2005) in search of their
coolant for unspecified domestic or commercial use. Since Dar es Salaam is by far the largest city in
Tanzania, the Mtoni estuary, being the main aquatic system in that area, was selected to study
PCDD/F and dlI-like PCB levels in the aquatic environment for the first time. The first objective was
to assess PCDD/F and dI-PCB levels in sediments of the mixing zone of the Mtoni estuary, including
the Kizinga and Mzinga River mouths, during wet and dry seasons. A second objective was to
eventually link the observed levels to local sources.

4.3 Methodology

4.3.1 Study area

The Mtoni estuary (Figure 4.1) is located at approximately 3 km south of Dar es Salaam (Tanzania)
and receives fresh water input from the Kizinga and Mzinga rivers. The creeks have mangrove trees
such as Avicennia marina, Bruguiera gymnorrhiza, Ceriops tagal, Rhizophora mucronata and
Sonneratia alba species growing on both sides (Mlay et al., unpublished). The fresh water input
from both rivers is low. An average base-line flow rate of 1 m®/s is observed in Kizinga River with an
increase to 8 m*/s in the rainy season while the water-flow rate in the Mzinga River is unstable and
lower than in the Kizinga River (Van Camp et al., 2013). Hence, the effect of the river discharges on
the hydrodynamics of the Mtoni estuary is very limited. The seven sampling stations (E1 to E7) were
located in the mixing zone and their salinities vary from almost fresh to brackish water with
somewhat higher salinities in the dry season (Mangion, 2011). Downstream this mixing zone
(stations F5 to F8), the water becomes rapidly sea water while the stations F1 to F4 more upstream
have fresh water. This estuarine mixing zone was selected because it integrates influences of
natural and anthropogenic sources in the riverine and marine systems.

The Mtoni estuary is highly impacted (PUMPSEA, 2007) by discharges of various origin: (1) the
Kizinga and Mzinga rivers draining the mangrove forest (Kruitwagen et al., 2008), (2) the
wastewater drainage systems from industrial and residential areas (of a population of around
500,000 inhabitants; NBS, 2003), (3) charcoal burning, (4) mangrove harvesting for residential
places, (5) salt mining, (6) tourism and (7) agriculture (Taylor et al., 2002).
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Figure 4.1: Sampling points in the Mtoni estuary, Dar es Salaam: E1 and E2 in the Kizinga River,
E3-E5 at the confluence and E6 and E7 in the Mzinga River. Stations F1-F2 in the
Kizinga River, F3-F4 in the Mzinga River, F5-F6 at the Navy shore and F7-F8 at
Kigamboni Seaway are additional sampling points. White line delimits the estuarine
mixing zone. The solid waste dumping site and textile factory are also indicated.

The Kizinga river that drains the urbanised areas of Keko, Chang’ombe, Kurasini and Temeke
(approximately 400,000 inhabitants; NBS, 2003) is suspected to carry a variety of wastes and
discharges originating from agricultural, industrial as well as residential sources (Taylor et al., 2002).
The Mzinga river, on the other hand, drains the rural areas of Vijibweni, Tuangoma and Mji Mwema
with a population of around 90,000 (NBS, 2003). Due to rapid growth of settlements along the
Mzinga creek resulting from increased human population, the river is suspected to carry agricultural
and residential wastes and discharges presumed to be emptied into the creek. The estuary further
receives inputs from the Dar es Salaam harbour which is located near the mouth of the estuary
during diurnal tides (up to 5 m amplitude) and from the Mtoni solid waste dumping site located in
between the two rivers.

4.3.2 Sampling

Sampling of sediments was conducted in the mangrove forests during low tides at Kizinga and
Mzinga creeks (Figure 4.1) of the Mtoni estuary. Two sampling campaigns were conducted: one
during the wet season (19" - 20" January 2011) and a second during the dry season (15" - 16™
August 2011). December and January have an average precipitation rate of 194 and 89 mm
respectively, while these rates in July and August are much lower with 48 and 47 mm respectively.
River flows in the Dar-es-Salaam area are mainly controlled by the precipitation rate in the previous
period. The flows of Kizinga and Mzinga rivers are highest in the wet season (the highest discharge
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rates can go up to 15 m>/s for the Kizinga river and 7 m®/s for the Mzinga river) while in the dry
season, base-line flows of 1 m®/s in the Kizinga river and even lower in the Mzinga river were
observed (Van Camp et al., 2013). The impact of both rivers on the pollutant levels in the mixing
zone can thus best be estimated by sampling in that zone at high (wet season) and at low (dry
season) river flow and comparison of the results.

Samples were collected from exactly the same locations during both campaigns. Seven sampling
stations were identified using a hand-held global positioning system (GPS): two in the Kizinga River
(E1 and E2), two in the Mzinga River (E6 and E7) and three at the confluence of the two rivers (E3,
E4 and E5).

From the results obtained during the wet and dry seasons in the mixing zone of the estuary, it
appeared that the sampling stations in Kizinga River and close to its mouth showed higher PCDD/F
values than the stations in and close to Mzinga River. It was thus interesting to investigate PCDD/F
levels more upstream in both rivers. In addition, the salinity gradient in the mixing zone is also small
and real marine water samples were not included in the previous samplings. We were thus not able
to appreciate any evolution of the PCDD/F levels from the estuarine mixing zone towards the
marine environment. Therefore, an additional sampling campaign was organised at 3 end-members
in October 2012: one site in the Kizinga River (fresh water stations F1-F2) much more upstream
than stations E1 and E2, one site in Mzinga River (fresh water stations F3-F4) slightly more upstream
than stations E6 and E7, but these latter stations were yet, compared to the stations E1 and E2 in
Kizinga river, much more upstream and two sites in the marine area, close to and at the mouth of
the estuary (respectively marine water stations F5-F6 and F7-F8) (Figure 4.1).

All those samples were taken from two sub-sites within a distance of 20 m, except in the Kizinga
River. The first subsample was taken at the junction of the river and the textile wastewater stream
and the second was taken 200 m upstream of the River very close to unauthorised human
settlements.

Sediment sampling was done as described by EPA (United States Environmental protection Agency,
2001) using a hand corer (30 cm height, 6 cm internal diameter). The corer was gently pushed in the
mangrove sediments, closed at its upper end with a lid and smoothly removed by twisting and
pulling. The sediments were then pushed out of the corer tube using a piston and sectioned into
three segments corresponding to depth intervals of 0-3, 3-6 and 6-9 cm. All sediment samples were
packed in prior labelled and zipped polyethylene bags, stored in iceboxes and later frozen to -20°C.
Sediment samples were then air-transported while frozen to the Laboratory of the Department of
Analytical and Environmental Chemistry, Vrije Universiteit Brussel (VUB) in Belgium and lyophilised
(Leybold Heraus Lyophiliser) prior to the dioxins and dioxin-like compounds analyses.

4.3.3 Chemical reagents and standards

Acetone (Pesti-S grade, minimum 99.9%), n-hexane (minimum 96% assay) and toluene (minimum
99.8% assay) both dioxins and PCB grade, were purchased from Biosolve (The Netherlands). Ethyl
acetate (Pestanal, 99.8% assay) was purchased from Sigma-Aldrich (Germany). Sulphuric acid (95
97% w/w, ACS reagent) and Dimethylsulfoxide (DMSO) were obtained from Merck (Germany). Glass
fibre filters were purchased from Whatman (UK). Alpha-minimal essential medium (a-MEM), foetal
bovine serum (FBS) and trypsin (0.25%) were obtained from Gibco, UK. Phosphate buffered saline
(PBS) was obtained from Ambion (UK). Luciferase assay substrate and buffer were purchased from
Promega (The Netherlands). Anhydrous sodium sulphate was purchased from Boom (The
Netherlands). The X-CARB was purchased from Xenobiotic Diagnostics Systems, XDS Inc, USA and the
solution of 2,3,7,8-TCDD standard (50 ng/mL, purity 99%) was purchased from Campro Scientific (The
Netherlands).
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4.3.4 Determination of Particle Size and Total Organic Carbon (TOC)

The concentration of TOC was determined in all 50 sediment samples with a CHN analyser (Carlo
Erba) on a known amount (about 12 mg) of sediment sub-sample placed in a silver capsule and pre-
treated by acidification with 5% HCl. The grain size distribution was determined by an external
laboratory at 3 stations with low, medium and high organic matter (OM) content in their sediments
(stations E7, E2 and E1, respectively) to test the relation between both variables. Approximately 10
g lyophilised and homogenised sediment sample was prepared by removing salts, OM and
carbonates using hydrogen peroxide and hydrochloric acid respectively. A stable suspension was
obtained after rinsing and adding 5 ml of a peptizing agent. The coarse fraction (> 75 um) was
separated by wet sieving on a 75 um sieve, then dried at 105°C, and finally dry sieved. The grain-size
distribution of the fine fractions 2-75 um and <2 um was obtained using the Sedigraph 5100
coupled to a Mastertech 51. The precision for 10 consecutive measurements on aliquots of the
same sample was around 1% for each grain-size fraction.

4.3.5 Analysis of dioxin and dioxin-like compounds in Sediments
4.3.5.1 Sample Preparation

In all 50 sediment samples PCDD/Fs and dI-PCBs were analysed. Lyophilised sediment (5 g) was
extracted using pressurised liquid extraction in an Accelerated Solvent Extractor, ASE®, (Dionex,
USA) with a toluene:methanol (4:1 v/v) solvent system (Baston & Denison, 2011) and 33 mL
extraction cells. The ASE extraction conditions were: 125 °C oven temperature; 1500 psi (100 MPa)
pressure; 10 min static time; 6 min oven heating time; 60 s purge time; 60% of extraction cell
volume as flush volume and 2 static cycles. The extracts were then concentrated in a vacuum
centrifuge to near dryness and later re-suspended in n-hexane (5 mL).

4.3.5.2 Column Preparations for Clean up

The clean up and fractionation is based on the EPA Method 4435 (United States Environmental
protection Agency, 2008) from which we use the same piggybacked setup of columns. A sequential
setup of columns is used to remove Polychlorinated Aromatic Hydrocarbons (PAHs) and break down
undesired compounds (acid silica gel) and differentially elute PCDD/Fs and dI-PCBs (X-CARB affinity
chromatography column). An additional, third, column was added for sulphur removal. Column
preparation is described below and all columns are prepared daily.

An activated copper column (for elemental sulphur removal) was prepared by filling a Pasteur
pipette from bottom to top with glass wool and 1 cm of activated (with a 20% hydrochloric acid
solution) copper. The activated copper column was first rinsed with Milli-Q de-ionised water (3 x 1
mL) and then with acetone, toluene and n-hexane (each 3 x1 mL) in that order. The activated
copper columns were stored submerged in n-hexane to avoid oxidation.

An acidified silica column was prepared by filling a 10-mL disposable column (ID 0.8 mm), from
bottom to top, with glass wool, sodium sulphate (0.5 cm?), sulphuric acid-silica gel (33% H,SO, on
silica gel w/w; 4.3 cm®) and sodium sulphate (0.5 cm®). The acid silica column was then rinsed with
n-hexane (3 x 10 mL).

Similarly, an X-CARB column was prepared by using an open ended tube (ID 0.8 mm), but this was
filled (bottom to top) with glass wool, sodium sulphate (0.5 cm?), 1% X-CARB (1 cm’ packed),
sodium sulphate (0.5 cm®) and glass wool. The column was inverted and rinsed sequentially with
acetone (5 mL), toluene (20 mL) and n-hexane (10 mL).
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The acid silica gel column is placed on top, the copper column in the middle and the X-CARB column
at the bottom end prior to sample loading. The individual columns are connected to each other and
rinsed with n-hexane ensuring that the columns do not run dry.

4.3.5.3 PCDD/Fs and DI-PCBs Clean Up and Fractionation

The sediment extract in n-hexane was first sonicated for 5 minutes followed by vigorous vortexing.
An aliquot (2 mL from the original 5 mL) was quantitatively loaded on the acid silica gel column,
followed by elution of the column with n-hexane (total 21 mL). The acid silica gel and activated
copper columns were removed once the solvent had passed through. The remaining X-CARB column
was further rinsed with extra n-hexane (5 mL), followed by elution with a mixture of 8:1:1 of n-
hexane:toluene:ethylacetate (3 x 5 mL) to collect the fraction containing coplanar PCBs (i.e. PCB
fraction). The fraction containing the PCDD/Fs (dioxin fraction) was afterwards eluted (back-flushed)
with toluene (3 x 5 mL) after inverting the X-CARB column. The PCB and dioxin fractions were later
concentrated to dryness in a vacuum centrifuge and re-suspended in n-hexane (4 mL) for CALUX
analysis.

4.3.5.4 CALUX analysis

CALUX analysis was performed as described by Van Langenhove et al., (2011). Briefly, mouse
hepatoma cells (H1L7.5c1 cell line) were cultured in a-MEM with 10% FBS at 37 °C, 80% relative
humidity and 5% CO,. The cells were seeded (at an approximate density of 7.5 x10° cells/mL in a
clear bottom 96-well plate (Greiner Bio-One, Germany) and incubated for 24 hrs to reach a
monolayer of cells.

TCDD standard solutions (from 125 nM down to 30 pM) were made in DMSO and 4 uL of this
solution was transferred to 2 mL of n-hexane. Samples, in 4 mL n-hexane solvent, were serially
diluted in n-hexane and 4 pL of DMSO was added to each vial as a carrier solvent. For both the
TCDD- and sample solutions, the remaining n-hexane was evaporated using a vacuum centrifuge,
leaving behind either 4 uL DMSO with TCDD standard or 4 uL DMSO containing either PCDD/Fs or
dI-PCBs from the sample extract.

Prior to dosing, these standards and sample dilutions were diluted 100 times with cell culture media
(4 L standard solution or sample in 396 pL a-MEM with 10% FBS). Final solutions were vortexed
vigorously and dosed in triplicate (100 pL per well).

After 24 hrs of incubation, cells were rinsed and visually inspected for abnormalities. Then, cells were
lysed and shaken for 5min. Luciferin treatment was performed in the Glomax 96-well microplate
luminometer (Promega, USA), where the light output in relative light units (RLUs) was measured.
Sample responses were expressed as percentage maximum induction to 2,3,7,8-TCDD (%TCDD ).

4.3.5.5 Statistical Analysis of Data

TCDD standards were used to generate the calibration curve. A four-variable Hill equation fitting the
calibration curve (Elskens et al., 2011) was used to produce a sigmoid curve of the standard
solutions. The calibration equation was then used to convert the measured RLU values of the
samples into CALUX-BEQ value (Goeyens et al., 2010) by comparing the sample response curve with
the sigmoid dose-response curve (Elskens et al., 2011). Further data treatment was done using slope
ratio and Box-Cox transformation methods by linearisation of the non-linear Hill regression equation
as described by Elskens et al., 2011). Effective concentrations at 50% TCDD.« (ECso) of standard and
samples were used to determine the potency or bioanalytical equivalency (BEQ) of the samples.
Statistical analysis was performed using Microsoft Spreadsheet for Windows 2007 and graphical
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representations were performed using Spreadsheet and Sigmaplot programmes (SigmaPlot 10.0).
Pearson Correlation and Principal component analysis (PCA) were performed using Predictive
Analytic Software (PASW, version 16.0 for Windows) with the PCDD/F and dI-PCB values and the
geochemical properties (% total nitrogen (TN), % total carbon (TC) and %TOC) as variables (total 5),
and using the concentrations of pollutants in both seasons.

4.3.5.6 Quality Control (QC) and Quality Assurance (QA)

For each batch of samples, a blank sample was introduced through the complete treatment
procedure (procedural blank) to monitor the activity contributed by solvents and column matrices
used in the sample treatment. Moreover, DMSO and media blanks were added during dosing to
detect contamination and to determine the experimental background level of the cell culture. All
blank samples were measured in triplicate and were treated in a similar way as real samples. The
results with p < 0.05 (Student T-test) were considered statistically significant. The limit of detection
(LOD) was calculated according to the IUPAC definition. The blank value was taken as the average
background of the model fit represented in %RLU relative to the maximum TCDD-induced RLUs
(Elskens et al., 2011).

QC experiments were conducted on each 96-well plate, using an in-house QC solution (0.250 pg
TCDD/uL), to assess precision of the CALUX method and detect bias. Procedural blank fractions were
also spiked with the same QC solution prior to dosing to detect agonistic and antagonistic ligands in
that blank solution.

4.4 Results and Discussion
4.4.1 Grain size Distribution

Sandy particles dominated the mangrove sediments in the study area, with sand (> 75 um)
contributing for more than 60% of the weight. The correlation between TOC and the fine grain size
fraction (% < 2 um) was good (r* = 0.92) this was still the case (r* = 0.82) between TOC and the
mud+silt fraction (% < 75 um). It is well-known that muddy sediments having a high TOC content but
also a high amount of fine grain size fraction (< 2 um), accumulate by far higher amounts of
pollutants than sandy sediments (Baeyens et al., 1991). This means that TOC values can eventually be
used to normalise the pollutant concentrations in the sediment versus the mud fraction (% < 2 um).

In the Mtoni estuary, the high sand proportion implies that the capacity of the mangrove sediments
to adsorb the dioxins and dI-PCBs is medium to low. On the other hand, a high sand fraction favours
abiotic processes such as enhanced diffusion of oxygen in the sediment making pollutants more
bioavailable due to faster oxidation of organic matter and simultaneous release of associated
persistent organic micro-pollutants such as dioxins (Davies & Tawari, 2010; Holmer, 2003).

4.4.2 The CALUX H1L7.5c1 Assay

The CALUX bioassay integrates the responses of every AhR ligand available in the analysed sample
and because of this; it provides only an indication of the possible overall toxicity (Van Langenhove et
al., 2011). The results presented in this study show the importance of full-dose curves for
environmental samples because the additivity principle is not uphold, despite (1) the use of a
sulphuric acid silica gel column in the sample clean up step aimed at eliminating interferences caused
by PAHs and (2) separation of PCDD/Fs and dI-PCBs avoiding known antagonistic effects between
these two compound groups (Van Langenhove et al., 2011).
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Figure 4.2: (A): Typical TCDD-standard curve (e), sample with full dose response (0) and sample not attaining an upper plateau (V) using Hill

regression. B: Same data portrayed using the slope ratio method for TCDD (e) and full dose sample (0). C: Slope ratio for TCDD (e) and
sample without upper plateau (V).
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Luciferase induction was reproducible with coefficients of variation (CV) less than 15% for a given
standard or sample extract measured in triplicate. Mean values of luciferase response measured in
three replicate wells were used to generate the dose—-response curves. The dose—response curve of
TCDD standards was sigmoidal in appearance as shown in Figure 4.2.

4.4.3 Quality Control

Blank samples (n = 6) spiked with the in-house QC solution (0.250 pg TCDD/uL) ranged in recoveries
from 85 to 120% for the PCB fraction and from 91 to 115% for the PCDD fraction, well in accordance
with an acceptable relative standard deviation of 20% (80-120% recovery of the TCDD spike). DMSO
controls showed no marked difference in response to fitted background values (p = 0.45 for a two-
tailed Student T-test). Media controls were generally lower in response, but borderline not
statistically significantly different (p = 0.06 for a two-tailed Student T-test).
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Figure 4.3: Quality Control scatter chart of analyses during the study. The dotted line above
and below the mean (0.24) indicate the mean + 1SD values. The red lines indicate
the mean * 3SD values.

A total of 72 QC experiments were performed in this study. When these experiments are plotted on a
control chart (Figure 4.3), a mean of 0.24 * 0.02 pg/g indicated that the analysis procedures were
reliable with a coefficient of variation (CV) at 7.2%. The LOD based on the averaged fitted
background value and on the DMSO blank was 0.05 pg TCDD/well. Recalculating with the starting
volume used in the serial dilution, an LOD of about 0.22 pg TCDD/g sediment was found.

4.4.4 Bioanalytical Equivalencies (BEQs) in Mtoni sediment samples

CALUX-BEQ values of PCDD/Fs in Mtoni estuary sediments were assessed using three methods: the
Hill regression equation, Box-Cox transformation (both providing an ECs, in pg/g BEQ) as well as the
slope ratio method (providing a single BEQ value). A detailed description of the methods can be
obtained from Elskens et al., (2011). The relationships between these methods indicate that they
correlate well (r* > 0.8, Figure 4.4), implying that either of these methods will provide reliable results
in this study. Model precision for BEQ determination based on CVs ranged from 6.7-17.4% (Hill
model), 5.2-14.3% (Box-Cox transformation) and 5.5-15.5% (Slope ratio method).
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Figure 4.4: Relationship between PCDD/Fs concentrations (ECso) in Mtoni estuary sediment

samples; (a) estimated by Hill equation and slope ratio method, (b) Hill regression
and Box — Cox transformation and (c).Box — Cox transformation and Slope ratio

Since the Hill equation is the most used method and for simplicity of comparison, Hill regression
BEQs will be continuously employed in the study and are presented in Table 4.1. To account for
non-parallelism that usually exists between dose—response curves of the reference standards and
the sample, the BEQ PCDD/F values in a sample were determined based on the EC,y, ECsoand ECgq of
the maximum TCDD result (TCDD,,,). DI-PCBs responses are lower than those of PCDD/Fs owing to
their lower toxicity equivalent factors (TEFs). Their potency was therefore determined using inverse
prediction, assuming a sample behaves like a diluted TCDD standard solution (Elskens et al., 2011).

In order to eliminate concentration differences emanating from variations in the sand fraction of the
sediments, pollutant concentrations in the Mtoni estuary sediments were normalised to TOC.
Despite the normalisation, PCDD/F and dioxin-like PCB profiles showed no obvious vertical trends.
The rather steady depth profiles indicate that the estuarine sediments are fairly well-mixed making
the profiles more or less uniform. It is possible that the hydrodynamics of the estuary (tidal
amplitude of up to 5 m at the mouth) provide frequent sediment mixing smoothing out possible
vertical concentration gradients. Perhaps, a depth of 9-cm is not sufficient enough to observe any
difference and therefore It may be interesting in the future to study the pollutant profiles in deeper
sediment layers.
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Table 4.1: Mtoni estuary sediment properties and the CALUX-BEQ values for PCDD/Fs and PCBs

CALUX-BEQ (pg/g sediment)

Code and  Section Season TOC (%) PCDD/Fs Dioxin-like
Location depth EC,o-ECgo range PCBs*
0-3cm wet 0.62 446 -21.6 0.35
E1: dry 1.86 63.3-41.1 0.47
S 06°52.443 3-6cm wet 0.63 45.4-25.9 0.33
E 039°17.014 dry 1.77 53.0-17.4 1.03
6-9cm wet 0.50 28.0-18.0 0.34
dry 2.23 23.0-12.2 0.26
0-3cm wet 1.02 22.3-14.9 0.38
E2: dry 1.46 55.7-37.7 0.63
S 06°52.357 3-6cm wet 1.02 31.4-17.6 0.34
E 039°17.099 dry 0.56 15.4-8.7 0.26
6-9 cm wet 0.56 21.5-10.4 0.33
dry 0.24 20.0-10.0 0.24
0-3cm wet 2.55 85.7-554 0.47
E3: dry 1.35 72.6-45.4 0.41
S06°52.058 3-6cm wet 3.57 38.2-23.9 0.15
E 39°17.355 dry 0.68 43.6-11.4 0.40
6-9 cm wet 3.83 32.3-13.1 0.14
dry 0.66 19.4-14.0 0.11
0-3cm wet 1.04 42.7-24.3 0.48
E4. dry 0.98 81.2-8.90 0.27
S 06°52.090 3-6cm wet 1.15 31.5-104 0.28
E 039°17.501 dry 1.71 49.9-38.4 0.55
6-9 cm wet 1.23 20.0-13.9 0.39
dry 0.96 42.8—-15.6 0.10
0-3cm wet 2.38 12.9-8.75 0.25
E5: dry 0.70 15.9-8.89 0.55
S 06°52.164 3-6cm wet 0.90 3.73-2.31 0.18
E 039°17.658 dry 0.80 35.3-11.0 0.47
6-9 cm wet 1.40 5.29-2.59 0.23
dry 0.46 16.0-9.00 0.36
0-3cm wet 3.12 36.9-18.3 0.28
E6: dry 3.57 24.1-14.0 0.39
$06°52.882 3-6cm wet 4.42 19.2-9.8 0.19
E 039°18.391 dry 3.01 25.4-11.7 0.26
6-9 cm wet 2.54 22.9-10.8 0.18
dry 4.30 22.7-10.6 0.24
0-3cm wet 7.50 24.5-11.7 0.54
E7: dry 1.35 19.4-11.7 0.19
$06°52.952 3-6cm wet 2.41 25.6-12.4 0.44
E 039°18.454 dry 1.72 25.4-14.4 0.23
6-9 cm wet 7.07 17.1-8.45 0.60
dry 1.66 12.4-5.85 0.24

*Results were determined by the inverse prediction method

85



The PCDD/F results from the CALUX screening for the Mtoni estuary sediment extracts are shown in
Figure 4.5a. The PCDD/F concentrations in this Figure were based on the Hill BEQs, and ranged from
5.7 + 1.4 t0 39.9 + 5.8 pg BEQ/g sediment in wet season and between 14.1 + 2.0 and 32.8 + 4.7 pg
BEQ/g sediment in dry season. Higher levels of PCDD/Fs in both seasons were found in the Kizinga
River and in confluence stations close to it. Wet season samples contained less PCDD/Fs than dry
season samples in the Kizinga River, however at the Mzinga site it was the opposite. Higher PCDD/F
levels at confluence station E3 in both seasons could be due to a local emission source in proximity
to the Kizinga River. This is confirmed by the subsequent higher levels at the nearby station E4 in
both seasons and lower levels at E5, a station closer to the Mzinga River. No significant difference (t
= 0.55 two tailed; p = 0.59) in PCDD/F levels was observed between the two seasons (n = 42).

Response levels of dI-PCBs (Figure 4.5b) ranged from 0.21 + 0.03 to 0.53 + 0.03 pg BEQ/g sediment
in wet season and from 0.22 + 0.03 to 0.59 + 0.04 pg BEQ/g sediment in dry season. These BEQ
values were much lower (about 2 orders of magnitude) than those of the PCDD/Fs. At the 2 Kizinga
stations, confluence station E5 and Mzinga station E6, lower PCBs values were observed in wet
compared to dry season, while the opposite was true for confluence stations E3 and E4 as well as
Mzinga station E7. High dI-PCB levels were generally correlated to high PCDD/s values. The PCB
levels detected in the estuary showed no significant variations (t =0.27 two tailed; p = 0.79)
between the seasons (n=42).
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Figure 4.5: BEQ (with uncertainty error bars) for PCDD/Fs (a) and PCBs (b) in the Mtoni
sediments presented as averaged values of the three depth layers in dry and wet
seasons.

The Kizinga River drains the peri-urban environments of Temeke, Mbagala, Ukonga, Charambe,
Kijichi, Vituka, Keko, Kitunda, Mtoni and Kurasini which are highly populated and have many small-
scale to medium-scale industries. On the other hand, the Mzinga stream drains the rural
environments of Mji Mwema, Vijibweni and Tuangoma that are less populated and have very few
industries. As a result of various socio-economic activities, polymeric materials (household scraps,
plastics, vehicle tires and electronic wastes) are abundantly present in most domestic and industrial
wastes. Due to lack of appropriate infrastructures, most of these wastes are collected in open
dumping sites and then burnt. Polymeric materials in wastes, when subjected to open burning, may
lead to formation of PCDD/Fs and dI-PCBs (Estrellan & lino, 2010). In addition, 2 other sources of
PCDD/Fs and dI-PCBs have to be considered in the study area: (1) charcoal and/ or wood burning is
the main source of energy for domestic purposes; (2) privately owned second hand commuter
buses that need frequent services are the main means of transport for most residents. Mkoma,
(2008) observed that biomass burning (wood and charcoal burning) and traffic-related emissions
(leaded gasoline exhausts and spills, tire wear) are the major sources of particulate matter in the
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Dar es Salaam atmosphere. The detected PCDD/Fs and dI-PCBs levels in the estuary can thus
reasonably be associated with the open burning of polymeric waste, domestic wood/charcoal
burning and with traffic-related emissions.

The presence of sources in the vicinity of the sampling stations must also be taken into account to
explain the detected levels of PCDD/Fs and dI-PCBs. For example, upstream station E1 in the Kizinga
River is downstream to an untreated wastewater discharge point of a textile factory. Higher levels
of both PCDD/F and dioxin-like PCBs in Kizinga stations compared to Mzinga stations may reflect the
combined effects of the denser population and the more industrial activities in the Kizinga river
Basin because both are directly related to the various sources of PCDD/Fs and dI-PCBs mentioned
here-above.

A third sampling campaign was organised to verify the higher PCDD/F and dI-PCB levels in the Kizinga
River and to assess the change of the dioxin levels downstream the previous sampling stations in the
estuary (E1 to E5). The most upstream sampling station in the Kizinga River (F1) which is 200 m
upstream of a sewage factory pipe and near unauthorised human settlements, is very rich in organic
matter (Table 4.2), showed high PCDD/F (400 pg-BEQ/g sediment) and dI-PCB levels (0.91 pg-BEQ/g
sediment). The second upstream Kizinga River sample (F2) is also high but not exceptional with 21
pg-BEQ/g PCDD/Fs and 0.63 pg-BEQ/g dI-PCBs. The levels in the upstream Mzinga River samples were
close to those of the Kizinga River sample F2 (Table 4.2). A negative concentration gradient of
PCDD/Fs and dI-PCBs in sediments was observed in the downstream direction. The levels at the
mouth of the Mtoni estuary were very low: 1-2 pg-BEQ/g for PCDD/Fs and below LOD for dI-PCBs.
These additional results confirmed the previous conclusions that the impact of dioxins on the Kizinga
River Basin is higher than that of the Mzinga River and that a dilution effect is clearly noticeable in
the downstream direction.

Table 4.2: CALUX-BEQ values for PCDD/Fs and dI-PCBs in the end-member samples

CALUX-BEQ (pg/g sediment)

Code and Location TOC (%) PCDD/Fs PCDD/Fs Dioxin-like PCBs*
BEQ50 BEQ,,-BEQg, range
F1: S06°53'01.29” E 039°15’48.33” 8.58 397 652-242 0.91
F2:S506°52'58.07” E 039°16’06.81" 2.08 20.7 26.7-16.0 0.68
F3:S06°53'17.67” E 039°18’52.06” 1.05 17.2 21.0-14.2 0.60
F4:S06°53'13.60” E 039°18’52.69” 0.56 12.5 15.8-9.86 0.74
F5:506°51'06.95” E 039°18’22.82" 0.85 6.71 7.70-5.85 0.25
F6:S06°50'57.46” E 039°18'19.16" 0.72 6.82 7.47-6.23 0.23
F7:506°49'03.71"” E 039°18'24.11" 0.28 1.66 2.43-1.14 <LOD
F8:S06°48'57.62” E 039°18'34.60" 0.99 1.03 1.74-0.61 <LOD

*Results were determined by the inverse prediction method
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4.4.5 Correlation between pollutants and sediment geochemical characteristics

Calculations of the Pearson correlation coefficients were performed on pollutant levels as well as
sediment geochemical characteristics of all samples (n = 42) in the mixing zone in both seasons
(Table 4.3). A significant correlation was observed between PCDD/Fs and dioxin-like PCB levels (r* =
0.40, p << 0.05), however, no significant correlations (p > 0.05) were found with % TOC although it is
well-known that lipophilic compounds such as PCDD/Fs and dI-PCBs tend to preferably associate with
organic fractions (Koh et al., 2004; 2006; Pieters, 2007).

Table 4.3: Correlation coefficients between pollutants and various geochemical parameters
PCDD/Fs PCBs %TOC %TN %TC
PCDDs 1.000
PCBs 0.395 1.000
%TOC 0.070 0.208 1.000
%TN -0.049 0.120 0.913 1.000
%TC -0.065 0.172 0.823 0.893 1.000

Significant values at a = 0.05 (two-tailed) are in bold

The weak correlation between the pollutants and %TOC is contrary to the theoretical expectation
similar to Hilscherova et al., (2003), but the sources of TOC and PCDD/Fs or dI-PCBs are quite
different in the Mtoni study area. TOC in the estuary and rivers is mainly originating from 2 sources:
(1) mangrove degradation compounds and (2) untreated domestic sewage water (Chapter Two),
while PCDD/Fs and dI-PCBs originate from open burning processes and traffic related emissions. A
mixing of the PCDD/Fs or dI-PCBs with the organic matter in the estuary can occur in all kind of ratios.
It is thus not surprising that there exists no correlation between both variables. Good and significant
correlations (p < 0.05) were observed between % TOC and % TC (r* = 0.82), % TN and % TC (r* = 0.89)
and between % TOC and % TN (r* = 0.91).

4.4.6 Pollutant Source analysis by PCA

Multivariate analysis can be used to identify similarities and differences between pollutants in
samples as a means to detect possible sources. As we could expect, the PCA results indicated that the
variables can be represented by two principal components that accounted for 83.6 % of the total
variance in the original data sets (Figure 4.6). Based on the loading distribution of the variables, % TC,
% TN and % TOC constituted one related group (PC1), while the pollutants PCDD/Fs and dI-PCBs
formed the other group (PC2). This clearly indicates that the sources of the PCDD/Fs and dI-PCBs in
the Mtoni estuary differ from that of organic matter.
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Figure 4.6: A two-dimensional score plot of the PCDD/Fs and dI-PCBs in relation to
geochemical parameters in the Mtoni estuary

4.4.7 Comparison with Other Studies and with Sediment Quality Guidelines

Little information is available in literature regarding CALUX analysis of PCDD/Fs and dI-PCBs in
marine, estuarine and river sediments. No such research has been conducted in Tanzania and Africa
as a whole. Research on dioxin-like compounds in such sediments in the world used chemo-analysis
or GC-HRMS, because this method is considered as the golden standard (Baeyens et al., 2004).
Furthermore, most research focused on PCDD/Fs while no data on dI-PCBs were available for
comparison. Comparison with literature data indicated that the observed PCDD/F levels were
covering the ranges observed in the literature (see Table 4.4). Only at the Belgian coast where lower
values were observed (Sanctorum et al., 2007).

An attempt was made to compare the PCDD/F and dioxin-like PCB levels with the sediment quality
guidelines. Since Tanzania lacks these guidelines, National Oceanic and Atmospheric Administration
(NOAA), USA and Canadian Sediment quality guidelines were applied to assess the toxicity and risk of
the dioxin-like pollutants in the Mtoni estuary ecosystem. Mangrove sediments from Mtoni estuary
have higher PCDD/F levels than the NOAA apparent effects threshold (AET) of 3.6 pg-TEQ/g. The
levels were also higher than both the threshold effect level (TEL) for Canadian sediment quality
guideline (0.85 pg-TEQ/g) and the probable effect level (PEL) of 21.5 pg-TEQ/g. There were no
specific guidelines for dI-PCB levels.
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Table 4.4: Comparison of PCDD/F and PCB levels (pg-BEQ/g dw) determined by CALUX
bioassay in different marine sedimentary environments

Study site PCDD/Fs’ PCBs’ Reference

Mtoni estuary, Tanzania® 1.0-397 <LOD—-0.91 This study

UK estuaries 1.0-88 - Hurst et al., 2004

Hong Kong mudflats 3-68 - Wong et al., 2005

North coast of Bohai Sea, China 3.4 -28 - Hong et al., 2012

Masan Bay, Korea 17 - 275 - Yoo et al., 2006

Belgian coast 0.08-42.4 - Sanctorum et al., 2007b)
West coast, South Korea 34-11 - Hongetal., 2012

'values presented are BEQg; ? values are inversely predicted; * Values indicate the range of mean BEQ of both
seasons (n = 6)

The comparisons have shown that there could currently be a risk regarding PCDD/Fs, while the risk
associated with dI-PCBs is much lower. Because the toxicity of these chemicals is assumed additive,
increasing levels in line with the increasing anthropogenic activities can be alarming to the
biological community (Kruitwagen et al., (2006) such as the barred mudskippers and soft bottom
molluscs that inhabit the muddy areas. Presence of these pollutants in mangrove sediments may
cause impairments, like abnormal growth and malformations. The effects can reach other
organisms higher in the trophic level due to their bio-accumulation, bio-concentration and
persistent properties. The levels of pollutants observed in the frequently exchanged upper (0-3 cm)
layer can have impacts on the distribution and fate of pollutants to mangrove ecosystems and to
higher organisms that use mangrove sediment organisms as their food.

4.5 Conclusion

This study is the first of its kind that used in vitro bioassay analysis (CALUX) to determine dioxin and
dioxin-like compounds in the environments of East Africa. Sediment samples were collected in the
Mtoni estuary and its tributaries, the Kizinga and the Mzinga Rivers, in the vicinity of Dar es Salaam.
While it is well known that anthropogenic activities as open burning of plastic scraps, household
burning of wood or charcoal and traffic related emissions which all frequently occur in the Dar es
Salaam region can lead to PCDD/F and dI-PCB production, it was totally unknown if some or all of
those sources resulted in the contamination of the nearby aquatic systems. Our CALUX analyses of
the sediments in the Mtoni estuary and its 2 tributaries demonstrated that the range of PCDD/F
values (1.0-400 pg-BEQ/g-sediment) covers the ranges observed in Western Europe and Eastern Asia
sediments. Neither significant seasonal variations nor vertical gradients in the sediments could be
observed. For dI-PCBs, we could not find sediment results obtained by CALUX in the literature.
Sediments in the Kizinga River, which flows through a denser populated and more industrialised area
than the Mzinga River, showed also higher PCDD/F and dioxin-like PCB levels. Finally, the overall BEQ
values of PCDD/Fs and dI-PCB levels observed in sediments of the Dar es Salaam region indicate
possible ecological and human risks that may emanate from these contaminants.
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CHAPTER FIVE: GENERAL CONCLUSIONS
5.1 Conclusion and Recommendations

Developing countries such as Tanzania experience major societal, economic, industrial and
agricultural changes with a severe impact on the environment. A major harbour such as Dar es
Salaam is an ideal site for implantation of industrial activities. Increasing labour demand by those
industries leads to population migration from rural areas to Dar es Salaam which is rapidly
expanding. The infrastructure of the town is not adapted to this population increase, neither is its
road infrastructure to the enhanced traffic. Environmental stress is resulting from the unauthorised
settlements, the lack of domestic and industrial waste water treatment plants, the open burning of
plastics, wood and charcoal, the illegal waste dumping sites, the destruction of mangroves for wood
needs, etc.

Since only a very limited number of environmental studies on the Dar es Salaam area exist, we took
the opportunity to contribute to that lack of knowledge by studying the impact of the pollution from
various sources on the Mtoni estuary, Dar es Salaam.

Sediments integrate during a certain period of time the amounts of pollutants discharged into the
aquatic system. They are also easy to sample, to store, to transport and to analyse. Therefore, we
selected a number of sediment sampling stations in the Mtoni mixing zone of the estuary. The mixing
zone integrates the effects of the riverine system (in this case the Kizinga and Mzinga rivers), local
direct sources and the marine system. It appeared that the sediments were well mixed, so that
vertical gradients were absent, and that the differences in pollutant concentrations between the wet
and dry season were not significant. The results of the two field campaigns in the wet and the dry
season clearly demonstrated that in the mixing zone, where the salinity gradient is relatively small,
no large concentration differences between stations were found. Therefore a third sampling
campaign was organised with sampling further upstream in the rivers and further downstream up to
the mouth of the estuary. These results clearly showed a decreasing gradient from the fresh water
end-members to the marine end-member for almost all selected pollutants (arsenic was the
exception).

Specifically for each of the groups of compounds we investigated, the following specific conclusions
can be drawn:

Findings from carbon and nitrogen elements and their stable isotopic ratios have indicated that
mangrove sediments from Mtoni estuary are impacted by sewage OM. This sewage OM has a high
8"N value due to N rich ammonia volatilisation occurring during degradation of wastewater.
Correlations between sedimentary §"°C and §"°N and quantitative estimation of the contribution of
each of the various sources have identified two major OM sources for the Mtoni estuary: sewage
material in the wet season and mangrove litter during the dry season. Seasonal changes in sewage
discharges could explain the spatial patterns and seasonal variability of OM in the Mtoni estuarine
sediments. However, when using C/N ratios combined with either §°C or 6N values only suggest
one major source: sewage input. The variability in C/N ratios is, however, less unambiguously related
to OM source than it is for the isotope ratios of N and C.

All the elements from anthropogenic origin showed high enrichment factors similar to Cu, Cr, Zn and
Pb in the Mtoni estuary (Kruitwagen et al., 2008) and Cr, Zn, As, Cd and Pb in the coastal area of Dar
es Salaam (Rumisha et al., 2012). Highly enriched areas in the riverine zones as compared to marine
and mixing zones could be due to local anthropogenic activities. Agricultural, industrial as well as
domestic activities could be the main sources of the metals particularly in this area where (i) very few
residents are connected to proper sewage systems, (ii) most industries discharge effluents without
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proper treatment and (iii) most discharges are directed into the valleys, rivers and ocean implicitly or
explicitly (Rumisha et al., 2012). For example, upstream stations in the Kizinga River are close to
unauthorised human settlements and to a textile factory, which could supply industrial effluents
containing variable amounts of metals. In the case of Mzinga upstream stations, the enrichment
could be due to unauthorised human settlements where solid wastes from urban agriculture,
households and small industries are trashed away.

A clear decreasing concentration gradient for trace metals in downstream direction from Kizinga and
Mzinga rivers towards the mouth of the estuary is observed for almost all elements except As.
Elements from anthropogenic origin can be subdivided in 3 groups: the first consisting of Cu, Ni, Cr,
Mn, Zn, Al, Fe, As, Pb; the second consists of Cd, which ahs negative correlarion with OM, and the
third consisting of Sr having no correlation with either OM or any other metal.

While it is well known that anthropogenic activities as open burning of plastic scraps, household
burning of wood or charcoal and traffic related emissions which all frequently occur in the Dar es
Salaam region can lead to PCDD/F and dioxin-like PCB production, it was totally unknown if some or
all of those sources resulted in the contamination of the nearby aquatic systems. Our CALUX analyses
of the sediments in the Mtoni estuary and its 2 tributaries demonstrated that the range of PCDD/F
values (1.0-400 pg-BEQ/g-sediment) covers the ranges observed in Western Europe and Eastern Asia
sediments. Sediments in the Kizinga River, which flows through a denser populated and more
industrialised area than the Mzinga River, showed higher PCDD/F and dioxin-like PCB levels.

Finally, the high overall BEQ values of PCDD/Fs and dI-PCBs observed in sediments of the Dar es
Salaam region and the highly enriched EFs for some toxic metals especially As, necessitate a carefully
monitoring, because those pollutants are a potential threat to the ecosystem and humans. This is
because these pollutants can bioaccumulate. For example, high bioaccumulation factors of As, Cd,
Cu, Pb, Zn, Ni and Mn were observed in tissues of soft bottom molluscs (De Wolf et al., 2001; De Wolf
& Rashid, 2008; Rumisha et al., 2012). Furthermore, the abnormal growth and malformations in
mudskippers (Periophthalmus argentilineatus Valenciennes) observed by Kruitwagen et al., (2006) in
the Mtoni and reduced weight and size observed by Dewolf and Rashid, (2008) are correlated to
environmental pollution. Because the toxicity is assumed additive and increasing levels in line with
the increasing anthropogenic activities can be alarming because many of these chemicals show bio-
accumulation, bio-concentration and persistent properties. The pollutants can finally reach other
organisms, higher in the trophic level, that use the mangrove sediment organisms as their food.
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